• Title/Summary/Keyword: Thin Cu film

Search Result 930, Processing Time 0.027 seconds

High Efficiency Thin Film Photovoltaic Device and Technical Evolution for Silicon Thin Film and Cu (In,Ga)(Se,S)

  • Sin, Myeong-Hun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.88-88
    • /
    • 2012
  • High efficiency thin film photovoltaic device technology is reviewed. At present market situation, the industrial players of thin film technologies have to confront the great recession and need to change their market strategies and find technical alternatives again. Most recent technology trends and technical or industrial progress for Silicon thin film and CIGS are introduced and common interests for high efficiency and reliability are discussed.

  • PDF

SEL 법으로 제조된 $CuInS_2$ 화합물 반도체 박막의 전기적 특성

  • Park, Gye-Choon;Jeong, Woon-Jo;Kim, Jong-Uk
    • Proceedings of the KIEE Conference
    • /
    • 2004.07c
    • /
    • pp.1605-1608
    • /
    • 2004
  • Single phase $CuInS_2$ thin film with a highest diffraction peak (112) at a diffraction angle ($2{\theta}$) of 27.7$^{\circ}$ was well made by SEL method at annealing temperature of 250 $^{\circ}C$ and annealing hour of 60 min in vacuum of $10^{-3}$ Torr or in S ambience for an hour. And the peak of diffraction intensity at miller index (112) of $CuInS_2$ thin film annealed in S ambience was shown a little higher about 11 % than in only vacuum. Single phase $CuInS_2$ thin films were appeared from 0.85 to 1.26 of Cu/In composition ratio and sulfur composition ratios of $CuInS_2$ thin films fabricated in S ambience were all over 50 atom%. Also when Cu/In composition ratio was 1.03, $CuInS_2$ thin film with chalcopyrite structure had the highest XRD peak (112). And lattice constant a and grain size of the thin film in S ambience were appeared a little larger than those in only vacuum. The largest lattice constant of a and grain size of $CuInS_2$ thin film in S ambience was 5.63 ${\AA}$ and 1.2 ${\mu}$m respectively. And the films in S ambience were all p-conduction type with resistivities of around $10^{-1}{\Omega}cm$.

  • PDF

A Study on th properties and Fabrication of $CuGaS_2$ Ternary Compound thin film ($CuGaS_2$ 3원 화합물 박막의 제작과 분석에 관한 연구)

  • Yang, Hyeon-Hun;Jeong, Woon-Jo;Park, Gye-Choon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.279-280
    • /
    • 2008
  • For the manufacture of the $CuGaS_2$, Cu, Ga and S were vapor-deposited in the named order. Among them, Cu and Ga were vapor-deposited by using the Evaporation method in consideration of their adhesive force to the substrate so that the composition of Cu and Ga might be 1 : 1, while the surface temperature having an effect on the quality of the thin film was changed from R.T.[$^{\circ}C$] to 150$[^{\circ}C]$ at intervals of 50$[^{\circ}C]$. As a result, at 400$[^{\circ}C]$ of the Annealing temperature, their chemical composition was measured in the proportion of 1 : 1 : 2. It could be known from this experimental result that it is the optimum condition to conduct Annealing on the $CuGaS_2$ thin film under a vacuum when the $CuGaS_2$ thin film as an optical absorption layer material for a solar cell is manufactured.

  • PDF

Structural and Electrical Properties of $CuInSe_2$ Ternary Compound Thin Film ($CuInSe_2$ 3원 화합물 박막의 전기적 구조적 특성)

  • Kim, Young-Jun;Yang, Hyeon-Hun;Park, Joung-Yun;Jeong, Woon-Jo;Park, Gye-Choon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.258-259
    • /
    • 2005
  • [ $CuInSe_2$ ] thin films were fabricated at various fabrication conditions (substrate temperature, sputtering pressure, BC/RF power, vapor deposition, heat treatment). And structural and electrical properties were measured in order to certify optimum conditions for growth of the ternary compound semiconductor $CuInSe_2$ thin films with stoichiometric composition. $CuInSe_2$ thin film was well made at the heat treatment of 500[$^{\circ}C$] of SLG/Cu/In/Se stacked elemental layer which was prepared by sputter and thermal evaporator, and chemical composition of the thin film was analyzed nearly as the proportion of 1 : 1 : 2. At the same time, carrier concentration, hall mobility and resistivity of the thin films was $1.27\sim9.88\times10^{17}[cm^{-3}]$, $49.95\sim185[cm^2/V{\cdot}s]$ and $10^{-1}\sim10^{-2}[\Omega{\cdot}cm]$, respectively

  • PDF

Study point defect and growth for $CuInSe_2$ single crystal thin film by hot wall epitaxy (Hot Wall Epitaxy (HWE) 법에 의한 $CuInSe_2$ 단결정 박막 성장과 점결함 연구)

  • Yu, Sang-Ha;Hong, Gwang-Jun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.152-153
    • /
    • 2007
  • $CuInSe_2$ single crystal thin film was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the hot wall epitaxy (HWE) system. After the as-grown $CuInSe_2$ single crystal thin films was annealed in Cu-, Se-, and In-atmospheres, the origin of point defects of $CuInSe_2$ single crystal thin films has been investigated by the photoluminescence(PL) at 10 K. The native defects of $V_{Cu}$, $V_{Se}$, $Cu_{lnt}$, and $Se_{lnt}$ obtained by PL measurements were classified as a donors or acceptors type. And we concluded that the heat-treatment in the Cu-atmosphere converted $CuInSe_2$ single crystal thin films to an optical n-type. Also, we confirmed that In in $CuInSe_2$/GaAs did not form the native defects because In in $CuInSe_2$ single crystal thin films existed in the form of stable bonds.

  • PDF

A Study of the Properties of CuInS2 Thin Film by Sulfurization

  • Yang, Hyeon-Hun;Park, Gye-Choon
    • Transactions on Electrical and Electronic Materials
    • /
    • v.11 no.2
    • /
    • pp.73-76
    • /
    • 2010
  • The copper indium disulfide ($CuInS_2$) thin film was manufactured using sputtering and thermal evaporation methods, and the annealing with sulfurization process was used in the vacuum chamber to the substrate temperature on the glass substrate, the annealing temperature and the composition ratio, and the characteristics thereof were investigated. The $CuInS_2$ thin film was manufactured by the sulfurization of a soda lime glass (SLG) Cu/In/S stacked [1] elemental layer deposited on a glass substrate by vacuum chamber annealing [2] with sulfurization for various times at a temperature of substrate temperature of $200^{\circ}C$. The structure and electrical properties of the film was measured in order to determine the optimum conditions for the growth of $CuInS_2$ ternary compound semiconductor $CuInS_2$ thin films with a non-stoichiometric composition. The physical properties of the thin film were investigated under various fabrication conditions [3,4], including the substrate temperature, annealing temperature and annealing time by X-ray diffraction (XRD), field Emission scanning electron microscope (FE-SEM), and Hall measurement systems. [5] The sputtering rate depending upon the DC/RF power was controlled so that the composition ratio of Cu versus In might be around 1:1, and the substrate temperature affecting the quality of the film was varied in the range of room temperature (RT) to $300^{\circ}C$ at intervals of $100^{\circ}C$, and the annealing temperature of the thin film was varied RT to $550^{\circ}C$ in intervals of $100^{\circ}C$.

$CuInSe_2$ thin film is manufactured by the Sputtering and Selenization process (스퍼터링 및 셀렌화 열처리에 의한 $CuInSe_2$ 박막제조)

  • Moon, Dong-Gwan;Ahn, Se-Jin;Yun, Jae-Ho;Gwak, Ji-Hye;Lee, Huy-Dek;Yoon, Kyung-Hoon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.83-84
    • /
    • 2009
  • Thin film solar cells based on CIGS continue to be a leading candidate for thin film photovoltaic devices due to their appropriate bandgap, long-term stability, and low-cost production. To date, the most successful technique for the deposition of a CIGS absorber layer has been based on the co-evaporation However, the evaporation process is difficult to scale-up for large-area manufacturing the sputtering and Selenizaton process has been a promising method for low-cost and large-scale production of high quality CIGS In this study, we have used Cu and CuIn alloy targets for precursor deposition the precursor deposited by sputtering Cu and CuIn targets and $CuInSe_2$ thin film is manufactured by Selenization process

  • PDF

Aging Effects on Electrical Characteristics of Sol-gel Processed CuO Thin Film Transistors (Aging 효과가 Sol-gel 공정 기반 CuO 박막 트랜지스터의 전기적 특성에 미치는 영향)

  • Jang, Jaewon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.9
    • /
    • pp.527-531
    • /
    • 2016
  • In this study, p-type thin film transistors consisting of CuO channels were fabricated by sol-gel process, with copper (II) acetate monohydrate precursors. At $500^{\circ}C$, the deposited films were fully converted into monoclinic phase CuO. The fabricated CuO thin film transistors deliver field effect mobility in saturation regime of $0.015cm^2/Vs$, and $I_{on}/I_{off}$ of ${\sim}10^3$. The degradation of the performance of the fabricated CuO thin film transistor caused by the exposure to air has been studied.

Nitrogen Monoxide Gas Sensing Properties of Copper Oxide Thin Films Fabricated by a Spin Coating Method (스핀코팅법으로 제작한 산화구리 박막의 일산화질소 가스 감지 특성)

  • Hwang, Hyeonjeong;Kim, Hyojin;Kim, Dojin
    • Korean Journal of Materials Research
    • /
    • v.25 no.4
    • /
    • pp.171-176
    • /
    • 2015
  • We present the detection characteristics of nitrogen monoxide(NO) gas using p-type copper oxide(CuO) thin film gas sensors. The CuO thin films were fabricated on glass substrates by a sol-gel spin coating method using copper acetate hydrate and diethanolamine as precursors. Structural characterizations revealed that we prepared the pure CuO thin films having a monoclinic crystalline structure without any obvious formation of secondary phase. It was found from the NO gas sensing measurements that the p-type CuO thin film gas sensors exhibited a maximum sensitivity to NO gas in dry air at an operating temperature as low as $100^{\circ}C$. Additionally, these CuO thin film gas sensors were found to show reversible and reliable electrical response to NO gas in a range of operating temperatures from $60^{\circ}C$ to $200^{\circ}C$. It is supposed from these results that the p-type oxide semiconductor CuO thin film could have significant potential for use in future gas sensors and other oxide electronics applications using oxide p-n heterojunction structures.