• Title/Summary/Keyword: Thickness vibration mode

Search Result 233, Processing Time 0.028 seconds

Vibration Characteristics of A Rectangular Tank in accordance with Changing Thickness And Boundary Condition (경계조건과 두께 변화에 따른 사각탱크의 진동 특성)

  • Bae, S.Y.
    • Journal of Power System Engineering
    • /
    • v.15 no.1
    • /
    • pp.24-31
    • /
    • 2011
  • Rectangular box type structures are used in many fields of civil, mechanical and marine engineering. Especially, Most ship structures are often in contact with inner or outer fluid, like ballast, fuel and stem tanks. Fatigue damages are sometimes observed in these tanks which seem to be caused by resonance with exciting force of engine and propeller. Vibration characteristics of these thin walled tanks in contact with fluid near engine and propeller are strongly affected by added mass of containing fluid. Therefore it is essentially important to estimate the added mass effect to predict vibration of the tanks. Many authors have studied vibration of rectangular tanks containing fluid. Few research on dynamic interaction among tank walls filled with fluid are reported in the vibration of rectangular tanks recently. In case of rectangular tanks, structural coupling between adjacent panels and effect of vibration modes of multiple panels on added mass of water have to be considered. In the previous report, a numerical analysis is performed for the coupling effect between panels of a tank on added mass of containing fluid, the effect of structural constraint between panels on each vibration mode for fluid region, and mode characteristics in accordance with changing breadth of the plates by using finite element method for plates and boundary element method for fluid region. In this paper, the coupling effect between panels of a tank on added mass of containing fluid, the effect of structural constraint between panels on each vibration mode for fluid region, and mode characteristics in accordance with changing length, thickness, and boundary condition of the plates are investigated numerically and discussed.

Behavior of the Flexural Vibration Damping of a Sandwich Beam System with a Partially Inserted Viscoelastic Layer (점탄성층이 부분적으로 삽입된 샌드위치보의 횡진동 감쇠특성)

  • Park, Jin-Taek;Yu, Hyeong-Won;Jang, Seok-Won;Choe, Nak-Sam
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.2
    • /
    • pp.225-233
    • /
    • 2002
  • The flexural vibration characteristics of a sandwich beam system with a partially inserted viscoelastic layer have been quantitatively studied using a finite element analysis in combination with a sine-sweep test. Antisymmetric mode shapes of the flexural vibration were visualized by the holographic interferometry and agreed with those calculated by the finite element simulation. Effects of the beam thickness as well as the length and thickness of partial viscoelastic layers on the system loss factor(η$\_$s/) and resonant frequency($\omega$$\_$r/) were significantly large fur the symmetric and antisymmetric modes of the beam system.

Vibration analysis of FG nanobeams based on third-order shear deformation theory under various boundary conditions

  • Jandaghian, Ali Akbar;Rahmani, Omid
    • Steel and Composite Structures
    • /
    • v.25 no.1
    • /
    • pp.67-78
    • /
    • 2017
  • In this study, free vibration of functionally graded (FG) micro/nanobeams based on nonlocal third-order shear deformation theory and under different boundary conditions is investigated by applying the differential quadrature method. Third-order shear deformation theory can consider the both small-scale effects and quadratic variation of shear strain and hence shear stress along the FG nanobeam thickness. The governing equations are obtained by using the Hamilton's principle, based on third-order shear deformation beam theory. The differential quadrature (DQ) method is used to discretize the model and attain the natural frequencies and mode shapes. The properties of FG micro/nanobeam are assumed to be chanfged along the thickness direction based on the simple power law distribution. The effects of various parameters such as the nonlocal parameter, gradient index, boundary conditions and mode number on the vibration characteristics of FG micro/nanobeams are discussed in detail.

Finite Element Simulation of Thickness Vibration Mode Multilayer Piezoelectric Transformer (두께 진동모드 적층형 압전 변압기의 유한요소 시뮬레이션)

  • Yoo, Kyung-Jin;Lee, Sang-Ho;Yoo, Ju-Hyun;Hong, Jae-Il;Son, Eun-Young
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.1059-1060
    • /
    • 2006
  • In this study, vibration mode multilayer piezoelectric transformer was designed and thickness simulated using ANSYS of finite element method simulator for investigating its optimum conditions ist. As a results, resonant frequency was decreased with the increase of output layer thickness, Output voltage, maximum displacement and maximum stress at 0.34mm thickness transformer were 228.1 V, $0.42{\mu}m,\;8.78[N/m^2]$ respectively.

  • PDF

Optimum Structural Modification by Sensitive Analysis (감도해석기법에 의한 최적 구조변경법)

  • 박석주;왕지석;김용철;박성현;이병훈
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.16 no.1
    • /
    • pp.47-53
    • /
    • 1992
  • This paper is discussing the Optimum Structural Modification by the Sensitive Analysis Method. The mokificxation for the first Mouth Open Mode of the C type structure was done by using coordinate sensitivities and thickness sensitivities. The results obtained are as follows; 1. the vibration could be minimized by reducing multiples of mode components of impact point and response point. 2. the tooling precision of the Press machine could be minimized by reducing relative vibration amplititutes between the tool and the object to be tooled. 3. the mode componets of 2 points could be identified by using the coordinate sensitivites for the C type structure. 4. the mode components of 2 points could be iodentified by using the thickness sensitivities for the C type structure.

  • PDF

Piezoelectric Characteristics and Temperature Stability of Resonant Frequency of PbTiO3 System Ceramics for High Frequency Resonator using Srd Overtone Thickness Vibration Mode

  • Yoo, Juhyun ;Min, Sukkyu ;Hwang, Sangmo ;Park, Changyub;Yoon, Hyunsang
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.4
    • /
    • pp.338-343
    • /
    • 2002
  • In this study, $Pb_{0.88}(La_{\alpha}Nd_{1-\alpha})_{0.08}(Mn_{1/3}Sb_{2/3})_{0.02}Ti_{0.98}O_3$ system ceramics with La molar ratio $\alpha$ variation were manufactured for 24 MHz class resonator application. Electromechanical coupling factor, mechanical quality factor and dynamic range of $3^{rd}$ overtone thickness vibration mode were measured as the variations of La and Nd molar ratio. Mechanical quality factor and dynamic range at $\alpha$ = 0.6 composition ceramics showed the highest value of 2691 and 52.37 dB, respectively. The temperature coefficient of resonant frequency measured from $-20^{\circ} to 80^{\circ}$ showed an excellent value of $5ppm/^{\circ}C$ at $\alpha$=1 composition ceramics.

Piezoelectric and dielectric Properties for Multilayer Piezoelectric Transformer Of Modified $PbTiO_3$ system ceramics (적층 압전 변압기용 변성 $PbTiO_3$ 세라믹스의 압전 및 유전 특성)

  • Yoo, Kyung-Jin;Yoo, Ju-Hyun;Jeong, Yeong-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.344-345
    • /
    • 2006
  • In this study, in order to develop low temperature sintering piezoelectric transformer, $(Pb_{0.99-x}Ca_xSr_{0.01})Ti_{0.96}(Mn_{1/3}Sb_{2/3})_{0.04}O_3$ ceramic systems were fabricated using $Na_2CO_3-Li_2CO_3$ as sintering aids and investigated with the amount of Ca substitution. The piezoelectric transformer requires high electromechanical coupling factor $k_t$ and high mechanical quality factor $Q_{mt}$ for generating high output power At the ($PbCaSr)Ti(MnSb)O_3$ ceramics with 24mol% Ca substitution sintered at $900^{\circ}C$, electromechanical coupling factor $k_t$ and mechanical quality factor $Q_{mt}$ showed the optimal values of 0.504 and 1655 respectively, for thickness vibration mode multilayer piezoelectric transformer application.

  • PDF

Resonance Characteristics of a 1-3 Piezoelectric Composite Transducer of Circular Arch Shape (원호형 1-3 압전 복합재 변환기의 공진 특성)

  • Kim, Dae-Seung;Kim, Jin-Oh
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.3
    • /
    • pp.301-312
    • /
    • 2009
  • This paper presents a theoretical approach to calculate the resonant frequency of a thickness vibration mode in the radial direction for a 1-3 piezoelectric composite transducer of circular arch shape. For the composite transducer composed of a piezoelectric ceramic and a polymer, vibration parameters were derived according to the volume ratio of a ceramic, and a vibration characteristic equation was derived from the piezoelectric governing equations with adequate boundary conditions. The fundamental resonant frequencies were calculated numerically and verified by comparing them with those obtained from the finite element analysis and the experiment. The volume ratio and the thickness are more substantial than the curvature radius to determine the fundamental resonant characteristics, and the fundamental resonant frequency becomes higher for the larger volume ratio of the piezoelectric ceramic and for the smaller thickness.

Visualization of Delamination Region in Concrete Structures using Mode Shapes of Delaminated Concrete Section (I) : Modal Test (박리된 콘크리트의 진동 모드 형상을 이용한 콘크리트 구조물 박리 손상 영역 가시화 (I) : 모드 시험)

  • Oh, Taekeun;Shin, Sung Woo
    • Journal of the Korean Society of Safety
    • /
    • v.28 no.5
    • /
    • pp.21-26
    • /
    • 2013
  • Delamination of cover concrete due to re-bar corrosion is a critical damage reducing structural safety of reinforced concrete structures. Therefore, it should be detected and evaluated to provide appropriate maintenance to recover structural integrity. Impact-echo method, which utilizes thickness vibration characteristics of delaminated concrete section, is effective for detection and evaluation of small areal size delamination. However, it may not be applicable for large areal size delamination in which flexural vibration modes are dominated. In this study, applicability of vibration mode shapes of delaminated concrete section is investigated for visualization of delamination region in concrete structures. Numerical and experimental modal tests are performed to estimate mode shapes of delaminated concrete section and linear absolute summation technique is proposed for effective visualization of delamination region based on estimated mode shapes.

Beat Control Using an Equivalent Ring Model (등가 종 모델을 이용한 맥놀이 조절법)

  • Kim, Seockhyun;Lee, Joonghyeok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.10a
    • /
    • pp.516-519
    • /
    • 2012
  • This study proposes a method of an equivalent bell model in order to tune the beat period of a Korean bell. In a Korean bell having a slight asymmetry, each circumferential mode splits into a mode pair which has a slight difference in frequency, and the interaction of the mode pair makes a beat in vibration and sound. An equivalent bell model which consists of an axi-symmetric bell and an equivalent point mass, has the same mode property as in a real bell. The equivalent bell model is constructed by the finite element analysis based upon the theory of a revolutionary shell Using the equivalent bell model, the beat period is predicted when the bell thickness is locally decreased to improve the beat property. The predicted result is verified by experiment on a test bell. The proposed method is useful to save the time required for tuning the beat period of a large bell.

  • PDF