• Title/Summary/Keyword: Thickness Coefficient

Search Result 1,285, Processing Time 0.029 seconds

Frictional Sounds and Its Related Mechanical Properties of Vapor Permeable Water Repellent Fabrics for Active Wear (스포츠웨어용 투습발수직물의 마찰음과 관련 역학적 성질 비교)

  • 조길수;박미란
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2003.05a
    • /
    • pp.8-13
    • /
    • 2003
  • Frictional sound of 13 vapor permeable water repellent fabric by sound generator were recorded and analysed through FFT analysis. The frictional Sounds were quantified by calculating total sound pressure(LPT), the level range ΔL and the frequency difference Δf. Mechanical properties were measured by KES-FB. LPT values of specimens finished wet coating were higher than those of dry coating. Values for bending rigidity, shear stiffness, surface roughness and compressional recovery of polyurethane fabrics increased compared with the cire finished fabrics. Laminated fabrics had high values of frictional coefficient and low values of surface roughness. LPT showed significant correlation with compressional energy, weight and thickness. (ΔL) was highly correlated with compressional linearity, frictional coefficient, compressional recovery, and (Δf) with tensile linearity, compressional energy, thickness, and weight.

  • PDF

An Experimental Study on Friction Characteristics in Pre-Coated Sheet Metal Forming (피복된 판재의 성형에서 마찰특성에 관한 연구)

  • 김호윤;최철현;배원병
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.6
    • /
    • pp.57-62
    • /
    • 2000
  • An experimental study has been performed to investigate friction characteristics of pre-coated metals widely used in domestic appliances. Seven-coated sheet metals are tested by using three friction mechanism such as straight pulling, frictionless roller, and non-rotational roller with three kinds of cylindrical rollers. In this experiment, effects of friction mechanism, blank thickness, and roller diameter on friction coefficient, surface roughness, and scoring factor have been investigated From the experimental results, it has been found that tested pre-coated sheet metals have low friction coefficients ($\mu$ = 0.15~0.20) because films coated on sheets take a role of lubricants. Friction coefficients of pre-coated metals decrease with increasing roller-diameters. Surface of pre-coated metals can be improved by decreasing the blank thickness

  • PDF

The performance analysis for NREL Phase VI Blade with blunt airfoil (Blunt airfoil를 이용한 Phase VI Blade의 성능변화)

  • Lee, Sunggun;Lee, Kyungseh;Chung, Chinwha;Park, Hyunchul
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.56.1-56.1
    • /
    • 2011
  • This study focus on the performance of blade with blunt airfoil which used at root region on Computational Fluid Dynamics(CFD). Based on the Phase VI had experiment by NREL, the experiment condition is also used for the performance of blade with the airfoil that trailing edge is changed. The thickness of airfoil trailing edge 1% and 5% is substituted for original airfoil. This study was progressing to calculate the pressure coefficient and torque from the effect on each airfoil according to difference of the thickness.

  • PDF

A NEW ALTERNATIVE ELLIPTIC PDE IN EIT IMAGING

  • Kim, Sungwhan
    • Bulletin of the Korean Mathematical Society
    • /
    • v.49 no.6
    • /
    • pp.1291-1302
    • /
    • 2012
  • In this paper, we introduce a new elliptic PDE: $$\{{\nabla}{\cdot}\(\frac{|{\gamma}^{\omega}(r)|^2}{\sigma}{\nabla}v_{\omega}(r)\)=0,\;r{\in}{\Omega},\\v_{\omega}(r)=f(r),\;r{\in}{\partial}{\Omega},$$ where ${\gamma}^{\omega}={\sigma}+i{\omega}{\epsilon}$ is the admittivity distribution of the conducting material ${\Omega}$ and it is shown that the introduced elliptic PDE can replace the standard elliptic PDE with conductivity coefficient in EIT imaging. Indeed, letting $v_0$ be the solution to the standard elliptic PDE with conductivity coefficient, the solution $v_{\omega}$ is quite close to the solution $v_0$ and can show spectroscopic properties of the conducting object ${\Omega}$ unlike $v_0$. In particular, the potential $v_{\omega}$ can be used in detecting a thin low-conducting anomaly located in ${\Omega}$ since the spectroscopic change of the Neumann data of $v_{\omega}$ is inversely proportional to thickness of the thin anomaly.

Elastohydrodynamic Lubrication Analysis of a Lundberg Profile-type Cylindrical Roller (Lundberg형 프로파일의 원통형 로울러의 탄성유체윤활 해석)

  • Park, Tae-Jo
    • Tribology and Lubricants
    • /
    • v.29 no.6
    • /
    • pp.353-359
    • /
    • 2013
  • The rollers and/or races in cylindrical and tapered roller bearings should be profiled to relieve high edge stress concentrations caused by their finite lengths and misalignment. In this study, a numerical analysis was performed to investigate the elastohydrodynamic lubrication (EHL) of a Lundberg profile-type cylindrical roller. A finite difference method with fully nonuniform grids and the Newton-Raphson method were used to present detailed EHL pressure distributions and film shapes, as well as the variations in the minimum and central film thicknesses with the profile modification coefficient. In the Lundberg profile, the maximum pressure and minimum film thickness always occurred near the edges. Proper modification of the Lundberg profile considerably increased the minimum film thickness.

The Improvement of Aerodynamic Performance of Flapping-Airfoil Using Thickness Variation Airfoil (두께 변화가 있는 익형을 이용한 flapping-Airfoil의 공력성능 개선)

  • Lee Jung Sang;Kim Chongam;Rho Oh Hyun
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.787-790
    • /
    • 2002
  • In this work, numerical experiments ave conducted to find out the optimal shape of flapping-airfoil using thickness variation airfoils. In the previous study of flapping-airfoil, we had found that the thrust efficiency of thicker airfoil is better than thinner one, but the latter has higher thrust coefficient. Therefore, we have combined thin(NACA0009) and thick(NACA0015)airfoil to overcome these demerits of each airfoil. Using this combined airfoil, we can achieve acceptable aerodynamic performances from thrust efficiency and coefficient points of view. In order to computational study, we have used parallel-implemented incompressible Wavier-Stokes solver. Computational results show how to design leading and trailing edge shapes.

  • PDF

A CFD Prediction of a Micro Critical Nozzle Flow (마이크로 임계노즐 유동의 CFD 예측)

  • Kim, Jae-Hyung;Woo, Sun-Hun;Kim, Heuy-Dong
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.652-657
    • /
    • 2001
  • Computational work using the axisymmetric, compressible, Navier-Stokes Equations is carried out to predict the discharge coefficient of mass flow through a micro-critical nozzle. Several kinds of turbulence models and wall functions are employed to validate the computational predictions. The computed results are compared with the previous experimented ones. The present computations predict the experimental discharge coefficients with a reasonable accuracy. It is found that the standard $k-\varepsilon$ turbulence model with the standard wall function gives a best prediction of the discharge coefficients. The displacement thickness of the nozzle wall boundary layer is evaluated at the nozzle throat and is well compared to a prediction obtained by an empirical equation. The resulting displacement thickness of the wall boundary layer is about 2% to 0.6% of the diameter of the nozzle throat for the Reynolds numbers of 2000 to 20000.

  • PDF

Design of Thick Laminated Composite Plates for Maximum Thermal Buckling Load (최대 열적 좌굴하중을 갖는 두꺼운 복합재료 적층판의 설계)

  • Lee, Young-Shin;Lee, Yeol-Wha;Yang, Myung-Seog;Park, Bock-Sun
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.7 s.94
    • /
    • pp.1761-1771
    • /
    • 1993
  • In this paper, the design of thick laminated composite plate subjected to thermal buckling load under uniform temperature distribution is presented. In the design procedures of composite laminated plates for maximum thermal buckling load. the finite element method based on shear deformed theory is used for the analysis or laminated plates. One-demensional search method is used to find optimal fiber orientation and, in the next step, optimal thickness is investigated. Design variables such as fiber orientation and ply thicknesses coefficient of plates are adopted. The optimal design for the symmetric or antisymmetric laminated plates consisted of 4 layers with maximum thermal buckling load is performed.

A Study on the Formability Factors of Sheet Metal in Deep Drawing of Square Cup by FEM (유한요소법에 의한 정사각컵 디프드로잉 성형에 미치는 성형인자에 관한 연구)

  • 이명섭;황종관;강대민
    • Journal of Ocean Engineering and Technology
    • /
    • v.14 no.4
    • /
    • pp.86-91
    • /
    • 2000
  • Numerical simulation of sheet metal forming for panels as other components has wide acceptance in the automotive industry. Therefore this paper was focused in the drawability factors (which are friction coefficient , radius of die and punch ) on the square cup deep drawing by the explicit finite elements code $PAM-STAMP^{TM}$. The computed results are compared with the experimental results to show the validity of the analysis. In order to compare the simulation results with the experiment results and predict the effect of drawability factors, the relationships between punch load punch stroke, and the relationships between thickness strain and distance are used. According to this study, the results of simulation by using $PAM-STAMP^{TM}$ will give engineers good information to access the drawability of square drawing.

  • PDF

Analysis on Surface Temperature Control of an Insulated Vertical Wall Under Thermal Radiation Environment (단열재가 부착된 수직벽 표면의 온도제어 해석)

  • Kang, Byung-Ha;Pi, Chang-Hun;Kim, Suk-Hyun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.4
    • /
    • pp.323-329
    • /
    • 2012
  • In this study, a rational procedures for estimation of insulation thickness of a vertical wall for condensation control or personnel protection has been investigated. Design parameters are height of the wall, thermal conductivity, emissivity, and operating temperatures. The results indicated that the surface emissivity plays a very important role in the design of insulation for the purpose of surface temperature control, especially in natural convection situation. radiation heat transfer coefficients for some new insulation material surface, such as elastomers, estimated to be more than 90% of the total surface heat transfer coefficient.