Browse > Article
http://dx.doi.org/10.4134/BKMS.2012.49.6.1291

A NEW ALTERNATIVE ELLIPTIC PDE IN EIT IMAGING  

Kim, Sungwhan (Division of Liberal Arts Hanbat National University)
Publication Information
Bulletin of the Korean Mathematical Society / v.49, no.6, 2012 , pp. 1291-1302 More about this Journal
Abstract
In this paper, we introduce a new elliptic PDE: $$\{{\nabla}{\cdot}\(\frac{|{\gamma}^{\omega}(r)|^2}{\sigma}{\nabla}v_{\omega}(r)\)=0,\;r{\in}{\Omega},\\v_{\omega}(r)=f(r),\;r{\in}{\partial}{\Omega},$$ where ${\gamma}^{\omega}={\sigma}+i{\omega}{\epsilon}$ is the admittivity distribution of the conducting material ${\Omega}$ and it is shown that the introduced elliptic PDE can replace the standard elliptic PDE with conductivity coefficient in EIT imaging. Indeed, letting $v_0$ be the solution to the standard elliptic PDE with conductivity coefficient, the solution $v_{\omega}$ is quite close to the solution $v_0$ and can show spectroscopic properties of the conducting object ${\Omega}$ unlike $v_0$. In particular, the potential $v_{\omega}$ can be used in detecting a thin low-conducting anomaly located in ${\Omega}$ since the spectroscopic change of the Neumann data of $v_{\omega}$ is inversely proportional to thickness of the thin anomaly.
Keywords
electrical impedance tomography; alternative elliptic PDE; spectroscopic change; anomaly thickness;
Citations & Related Records
연도 인용수 순위
  • Reference
1 H. Ammari, E. Beretta, and E. Francini, Reconstruction of thin conductivity imperfections, Appl. Anal. 83 (2004), no. 1, 63-76.   DOI   ScienceOn
2 H. Ammari, O. Kwon, J. K. Seo, and E. J. Woo, T-Scan electrical impedance imaging system for anomaly detection, SIAM J. Appl. Math. 65 (2004), no. 1, 252-266.   DOI   ScienceOn
3 H. Ammari and J. K. Seo, An accurate formula for the reconstruction of conductivity Inhomogeneity, Adv. in Appl. Math. 30 (2003), no. 4, 679-705.   DOI   ScienceOn
4 E. Beretta, E. Francini, and M. Vogelius, Asymptotic formulas for steady state voltage potentials in the presence of thin inhomogeneities. A rigorous error analysis, J. Math. Pures Appl. (9) 82 (2003), no. 10, 1277-1301.   DOI   ScienceOn
5 M. Bruhl and M. Hanke, Numerical implementation of two noniterative methods for locating inclusions by impedance tomography, Inverse Problems 16 (2000), no. 4, 1029-1042.   DOI   ScienceOn
6 M. Cheney, D. Isaacson, and J. C. Newell, Electrical impedance tomography, SIAM Rev. 41 (1999), no. 1, 85-101.   DOI   ScienceOn
7 S. Gabriel, R. W. Lau, and C. Gabriel, The dielectric properties of biological tissues II. measurements in the frequency range 10 Hz to 20 GHz, Phys. Med. Biol. 41 (1996), 2251-2269.   DOI   ScienceOn
8 H. Griffiths, H. T. L. Leung, and R. J. Williams, Imaging the complex impedance of the thorax, Clin. Phys. Physiol. Meas. 13 A (1992), 77-81.
9 S. Grimnes and O. G. Martinsen, Bioimpedance and Bioelectricity Basics, Oxford, UK: Elsevier, 2008.
10 J. Gu and L. Y. Yu, Influence of geometric factors on crack depth measurement using the potential drop technique, NDT Int. 23 (1990), 161-164.   DOI
11 D. Holder, Electrical Impedance Tomography: Methods, History and Applications, Bristol, UK: IOP Publishing, 2005.
12 H. Jain, D. Isaacson, P. M. Edic, and J. C. Newell, Electrical impedance tomography of complex conductivity distributions with noncircular boundary, IEEE Trans. Biomed. Eng. 44 (1997), 1051-1060.   DOI   ScienceOn
13 S. Kim, M. K. Choi, E. J. Lee, J. K. Seo, and E. J. Woo, Spectroscopic admittivity imaging of membrane structure, to appear.
14 S. Kim, J. Lee, J. K. Seo, E. J. Woo, and H. Zribi, Multifrequency trans-admittance scanner: mathematical framework and feasibility, SIAM J. Appl. Math. 69 (2008), no. 1, 22-36.   DOI   ScienceOn
15 S. Kim, J. K. Seo, and T. Ha, A nondestructive evaluation method for concrete voids: frequency differential electrical impedance scanning, SIAM J. Appl. Math. 69 (2009), no. 6, 1759-1771.   DOI   ScienceOn
16 H. Lee and W. K Park, Location search algorithm of thin conductivity inclusions via boundary measurements, Mathematical methods for imaging and inverse problems, 21729, ESAIM Proc., 26, EDP Sci., Les Ulis, 2009.
17 T. I. Oh, J. Lee, J. K. Seo, S. W. Kim, and E. J. Woo, Feasibility of breast cancer lesion detection using multi-frequency trans-admittance scanner (TAS) with 10Hz to 500kHz bandwidth, Physiol. Meas. 28 (2007), 71-84.   DOI   ScienceOn
18 W. K. Park and D. Lesselier, Reconstruction of thin electromagnetic inclusions by a level-set method, Inverse Problems 25 (2009), no. 8, 1-24.
19 J. K. Seo, O. Kwon, H. Ammari, and E. J. Woo, Mathematical framework and anomaly estimation algorithm for breast cancer detection: electrical impedance technique using TS2000 configuration, IEEE Trans. Biomed. Eng. 51 (2004), no. 11, 1898-1906.   DOI   ScienceOn
20 E. Somersalo, M. Cheney, and D. Isaacson, Existence and uniqueness for electrode mod- els for electric current computed tomography, SIAM J. Appl. Math. 52 (1992), no. 4, 1023-1040.   DOI   ScienceOn