• Title/Summary/Keyword: Thick film technology

Search Result 414, Processing Time 0.03 seconds

The CO sensing properties of thick film gas sensor using Co3O4 powders prepared by hydrothermal reaction method (수열합성법으로 제조된 Co3O4 분말을 사용한후막 가스센서의 CO 감지 특성)

  • Kim, Kwang-Hee;Kim, Jeong-Gyoo;Park, Ki-Cheol
    • Journal of Sensor Science and Technology
    • /
    • v.19 no.5
    • /
    • pp.385-390
    • /
    • 2010
  • CO sensing thick film gas sensors using $Co_3O_4$ powders prepared by hydrothermal reaction method, were fabricated, and their structural, electrical and CO gas sensing properties were investigated. The specific surface area of the $Co_3O_4$ powders obtained from BET analysis was about 79.0 $m^2/g$. XRD and SEM results show that the thick films heat-treated at $500^{\circ}C$ for 30 min after screen printing had the preferred orientation of (311) direction and the crystalline size was calculated to 221 $\AA$. The maximum activation energy obtained from the temperature-resistance characteristics was 3.11 eV in the temperature range of $290^{\circ}C$ to $310^{\circ}C$. The sensitivity to 1,000 ppm CO was about 150 %. The specific surface area, crystalline size, and maximum activation energy were increased significantly and the sensitivity for CO gas was improved largely.

Fabrication of Thick Film Capacitors with Printing Technology (인쇄기법을 이용한 후막 캐패시터 제작)

  • Lee, Hye-Mi;Shin, Kwon-Yong;Kang, Hyung-Tae;Kang, Heui-Seok;Hwang, Jun-Young;Park, Moon-Soo;Lee, Sang-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2007.11a
    • /
    • pp.100-101
    • /
    • 2007
  • Polymer thick film capacitors were successfully fabricated by using ink-jet printing and screen printing technology. First, a bottom electrode was patterned by ink-jet printing of a nano-sized silver ink. Next, a dielectric layer was formed by the screen printing, then a top electrode was pattern by ink-jet printing of a nano-sized silver ink. The printed area of the dielectric layers were changed into $2{\times}2m^2$and $4{\times}2m^2$, and also the area of the electrodes were patterned with $1{\times}1mm^2$ and $1{\times}3mm^2$. The thickness of the printed dielectric layer was ranged from 1.1 to $1.4{\mu}m$. The analysis of capacitances verified that the capacitances was proportional to the area of the printed electrode. The capacitances of the fabricated capacitors resulted in one third of the calculated capacitances.

  • PDF

Effects of Electrolyte Concentration and Relative Cathode Electrode Area Sizes in Titania Film Formation by Micro-Arc Oxidation

  • Lee, Yong-K.;Lee, Kang-Soo
    • Corrosion Science and Technology
    • /
    • v.9 no.4
    • /
    • pp.171-174
    • /
    • 2010
  • MAO (micro-arc oxidation) is an eco-friendly convenient and effective technology to deposit high-quality oxide coatings on the surfaces of Ti, Al, Mg and their alloys. The roles of the electrolyte concentration and relative cathode electrode area sizes in the grown oxide film during titanium MAO were investigated. The higher the concentration of the electrolyte, the lower the $R_{total}A$ value. The oxide film produced by the lower concentration of the electrolyte is thinner and less uniform than the film by the higher concentration, which is thick and porous. The cathode area size must be bigger than the anode area size in order to minimize the voltage drop across the cathode. The ratio of the cathode area size to the anode area size must be bigger than 8. Otherwise, the cathode will be another source for voltage drop, which is detrimental to and slows down the oxide growth.

The Method of Thermograph using Thermoelectric Sensor Device in the Carbon fiber Thick Films (Carbon fiber 후막형 열전센서 소자를 이용한 적외선 체열진단)

  • Song, Min-Jong;Dong, Kyung-Rae;Kim, Chang-Bok;Choi, Seong-Kwan;Park, Yong-Soon
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.12 no.2
    • /
    • pp.145-150
    • /
    • 2010
  • Thick films of carbon fiber were prepared by a heating element of plan shape made in Darin co., We have investigated surface morphology of the specimen depending on heat-treatment temperatures. Scanning electron microscope(SEM) image of carbon fiber thick films of the specimen heat treated shows a grain growth at $1200^{\circ}C$ and becomes a poly-crystallization at $1350^{\circ}C$. The variation of resistivity at the thermally annealed specimen above $600^{\circ}C$ depends on type of the substrates. It may be due to a variation of film thickness and a difference of interfacial phenomena. A heating element of features was affected significantly by skin blood and quantity of heat of the body physiological function. After radiation of farinfrared for plate heating element, the function of biometric physiological is considered of skin blood flow and calorie which greatly affects on individuals. Electromagnetic wave was not influence on the body.

  • PDF

Characterization of PMW-PZT Thick Films Prepared by Screen Printing Method (스크린 인쇄법에 의해 제조한 PMW-PZT 후막의 특성)

  • Son, Jin-Ho;Kim, Yong-Bum;Cheon, Chae-Il;Yoo, Kwang-Soo;Kim, Tae-Song
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.1
    • /
    • pp.30-35
    • /
    • 2004
  • PMW-PZT thick films of about $30{\mu}m$ thickness were fabricated on Pt/$TiO_2$/$SiN_x$Si substrate by the hybrid method of screen printing and PZT sol application. With the increase of the number of the sol application times, the sintered density and electrical properties of PMW-PZT thick films were evidently increased. For the PMW-PZT thick film with PZT sol application of 10-times, the dielectric constant ($\varepsilon_r$) was 745 at the frequency of 100 KHz and thepiezoelectric coefficient ($d_33$) was 155 pC/N at the applied pressure of 1 atm.

Study on the Compositions of Photosensitive Resistor Paste Using Epoxy Acrylate Oligomers and Conductive Carbonblack (에폭시 아크릴레이트 올리고머와 전도성 카본블랙을 이용한 감광성 저항 페이스트 조성 연구)

  • Park, Seong-Dae;Kang, Nam-Kee;Lim, Jin-Kyu;Kim, Dong-Kook
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.421-421
    • /
    • 2008
  • Generally, the polymer thick-film resistors for embedded organic or hybrid substrate are patterned by screen printing so that the accuracy of resistor pattern is not good and the tolerance of resistance is too high(${\pm}$20~30%). To reform these demerits, a method using Fodel$^{(R)}$ technology, which is the patterning method using a photosensitive resin to be developable by aqueous alkali-solution as a base polymer for thick-film pastes, was recently incorporated for the patterning of thermosetting thick-film resistor paste. Alkali-solution developable photosensitive resin system has a merit that the precise patterns can be obtained by UV exposure and aqueous development, so the essential point is to get the composition similar to PSR(photo solder resist) used for PCB process. In present research, we made the photopatternable resistor pastes using 8 kinds of epoxy acrylates and a conductive carbonblack (CDX-7055 Ultra), evaluated their developing performance, and then measured the resistance after final curing. To become developable by alkali-solution, epoxy acrylate oligomers with carboxyl group were prepared. Test coupons were fabricated by patterning copper foil on FR-4 CCL board, plating Ni/Au on the patterned copper electrode, applying the resistor paste on the board, exposing the applied paste to UV through Cr mask with resistor patterns, developing the exposed paste with aqueous alkali-solution (1wt% $Na_2CO_3$), drying the patterned paste at $80^{\circ}C$ oven, and then curing it at $200^{\circ}C$ during 1 hour. As a result, some test compositions couldn't be developed according to the kind of oligomer and, in the developed compositions, the measured resistance showed different results depending on the paste compositions though they had the same amount of carbonblack.

  • PDF

Thin Film (La0.7Sr0.3)0.95MnO3-δ Fabricated by Pulsed Laser Deposition and Its Application as a Solid Oxide Fuel Cell Cathode for Low-Temperature Operation

  • Noh, Ho-Sung;Son, Ji-Won;Lee, Heon;Kim, Hae-Ryoung;Lee, Jong-Ho;Lee, Hae-Weon
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.1
    • /
    • pp.75-81
    • /
    • 2010
  • The feasibility of using the thin film technology in utilizing lanthanum strontium manganite (LSM) for a solid oxide fuel cell (SOFC) cathode in a low-temperature regime is investigated in this study. Thin film LSM cathodes were fabricated using pulsed laser deposition (PLD) on anode-supported SOFCs with yttria-stabilized zirconia (YSZ) electrolytes. Although cells with a 1 ${\mu}m$-thick LSM cathode showed poor low-temperature cell performance compared to that of a cell with a bulk-processed cathode due to the lack of a triple-phase boundary length, the cell with 200 nm-thick gadolinia-doped ceria (GDC) inserted between the LSM and YSZ showed enhanced performance and more stable operation characteristics in a comparison of a cell without a GDC layer. We postulate that the GDC layer likely improved the cathode adhesion, therefore contributing to the improvement of the cell performance instead of serving as an interfacial reaction buffer.

Fabrication of Polycrystalline Si Films by Silicide-Enhanced Rapid Thermal Annealing and Their Application to Thin Film Transistors (Silicide-Enhanced Rapid Thermal Annealing을 이용한 다결정 Si 박막의 제조 및 다결정 Si 박막 트랜지스터에의 응용)

  • Kim, Jone Soo;Moon, Sun Hong;Yang, Yong Ho;Kang, Sung Mo;Ahn, Byung Tae
    • Korean Journal of Materials Research
    • /
    • v.24 no.9
    • /
    • pp.443-450
    • /
    • 2014
  • Amorphous (a-Si) films were epitaxially crystallized on a very thin large-grained poly-Si seed layer by a silicide-enhanced rapid thermal annealing (SERTA) process. The poly-Si seed layer contained a small amount of nickel silicide which can enhance crystallization of the upper layer of the a-Si film at lower temperature. A 5-nm thick poly-Si seed layer was then prepared by the crystallization of an a-Si film using the vapor-induced crystallization process in a $NiCl_2$ environment. After removing surface oxide on the seed layer, a 45-nm thick a-Si film was deposited on the poly-Si seed layer by hot-wire chemical vapor deposition at $200^{\circ}C$. The epitaxial crystallization of the top a-Si layer was performed by the rapid thermal annealing (RTA) process at $730^{\circ}C$ for 5 min in Ar as an ambient atmosphere. Considering the needle-like grains as well as the crystallization temperature of the top layer as produced by the SERTA process, it was thought that the top a-Si layer was epitaxially crystallized with the help of $NiSi_2$ precipitates that originated from the poly-Si seed layer. The crystallinity of the SERTA processed poly-Si thin films was better than the other crystallization process, due to the high-temperature RTA process. The Ni concentration in the poly-Si film fabricated by the SERTA process was reduced to $1{\times}10^{18}cm^{-3}$. The maximum field-effect mobility and substrate swing of the p-channel poly-Si thin-film transistors (TFTs) using the poly-Si film prepared by the SERTA process were $85cm^2/V{\cdot}s$ and 1.23 V/decade at $V_{ds}=-3V$, respectively. The off current was little increased under reverse bias from $1.0{\times}10^{-11}$ A. Our results showed that the SERTA process is a promising technology for high quality poly-Si film, which enables the fabrication of high mobility TFTs. In addition, it is expected that poly-Si TFTs with low leakage current can be fabricated with more precise experiments.

Temperature vs. Resistance Characteristics by Dopants of VO2 Thick-Film Critical Temperature Sensors (불순물 첨가에 따른 VO2 후막 급변온도센서의 온도-저항 특성)

  • Choi, Jung Bum;Kang, Chong Yun;Yoon, Seok-Jin;Yoo, Kwang Soo
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.5
    • /
    • pp.337-341
    • /
    • 2014
  • For various additives doped-$VO_2$ critical temperature sensors using the nature of semiconductor to metal transition, the crystallinity, microstructure, and temperature vs. resistance characteristics were systematically investigated. As a starting material of $VO_2$ sensor, vanadium pentoxide ($V_2O_5$) powders were used, and CaO, SrO, $Bi_2O_3$, $TiO_2$, and PbO dopants were used, respectively. The $V_2O_5$ powders with dopants were mixed with a vehicle to form paste. This paste was silk screen-printed on $Al_2O_3$ substrates and then $V_2O_5$-based thick films were heat-treated at $500^{\circ}C$ for 2 hours in $N_2$ gas atmosphere for the reduction to $VO_2$. From X-ray diffraction analysis, $VO_2$ phases for pure $VO_2$, and CaO and SrO-doped $VO_2$ thick films were confirmed and their grain sizes were 0.57 to $0.59{\mu}m$. The on/off resistance ratio of the $VO_2$ sensor in phase transition temperature range was $5.3{\times}10^3$ and that of the 0.5 wt.% CaO-doped $VO_2$ sensor was $5.46{\times}10^3$. The presented critical temperature sensors could be commercialized for fire-protection and control systems.