• Title/Summary/Keyword: Thick Cylinder

Search Result 88, Processing Time 0.025 seconds

Analysis of Radiative Heat Transfer about a Circular Cylinder in a Crossflow by P-l Approximation and Finite Volume Method in Non-Orthogonal Coordinate System (비직교좌표계에 대한 P-1 근사법 및 유한체적법을 이용한 주유동 중의 원형실린더 주위의 복사열전달 해석)

  • 이공훈;이준식;최만수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.3
    • /
    • pp.806-819
    • /
    • 1995
  • A study of radiative heat heat transfer has been done in the non-orthogonal coordinate system utilizing the finite volume method and the P.1 approximation. Radiation of absorbing, emitting and scattering media in a concentric annulus has been solved using the non-orthogonal coordinate and the calculations were compared with the existing results. The results obtained from the analysis using the finite volume method are in good agreement with the existing calculations for all optical thicknesses. It was also shown that for only optically thick cases, P-1 approximation can be used in a non-orthogonal coordinate. Convective heat transfer analysis has been carried out to obtain the temperature fields in a cross flow around a circular cylinder and the finite volume method was applied in the non-orthogonal coordinate system to analyze radiative heat transfer. Effects of the optical thickness, the ratio of the surface temperature of the cylinder tot he free stream temperature, and the scattering albedo on radiation have been presented.

Finite Element Analysis for the Design of Fiber Reinforced Metal Cylinder (강/복합재 이중구조 실린더 설계를 위한 유한요소 해석)

  • Kim, Tae-Hwan;Kim, Wie-Dae;Jeong, Chul-Gon
    • Composites Research
    • /
    • v.26 no.1
    • /
    • pp.7-13
    • /
    • 2013
  • This paper describes the design of dual-structured and thick-walled cylinder made of composites and special steel. The structure of special steel and composites reduce the weight of a product maintaining its property which is proper to the characteristics. Hence they are used in the fields, such as various ground weapons, aerospace and sports industries, where high elasticity and low weight are required. Thus in this study, the analysis was conducted to find the most proper composite application method changing its types and angle of laminates for the design. Through the comparison of the results, we suggest the method for composite application which is the most appropriate to the designing purpose of this study.

Experimental Study for the Mixing Effect of the Driven Bar on Rotating Flow in a Closed Cylinder (원통내 회전유동에서 회전봉의 형상이 혼합효과에 미치는 영향에 관한 실험적 연구)

  • Kim, Yu-Gon;Kim, Dong-Gyu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.2
    • /
    • pp.156-163
    • /
    • 2001
  • The experiment is conducted on the rapidly rotating incompressible flow within a confined cylinder using LDV(Laser Doppler Velocimetry). The configurations of interest are the flows between a rotating upper disk with a bar and a stationary lower disk enclosed within a cylinder. The flow is considered to be an axisymmetric undisturbed basic flow. The results show that the flow is strongly dependent on the radius and the shape of bar but is negligibly affected by the Reynolds number in turbulent flow. It is observed that in the lid-driven case the main forms near the wall as the Reynolds number increases. The thin bar causes the second axial flow due to the suction effect and the thick bar causes the main flow to be pulled toward the surface of the bar. The step bar shows the dual effect of the two. 1:2 tilt bar shows that the main flow distributes wider than the other cases in which interference occurs due step bar.

The Overstrain of Thick-Walled Cylinders Considering the Bauschinger Effect Facto. (BEF)

  • Ghorbanpour, A.;Loghman, A.;Khademizadeh, H.;Moradi, M.
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.4
    • /
    • pp.477-483
    • /
    • 2003
  • An independent kinematic hardening material model in which the reverse yielding point is defined by the Bauschinger effect factor (BEF) , has been defined for stainless steel SUS 304. The material model and the BEF are obtained experimentally and represented mathematically as continuous functions of effective plastic strain. The material model has been incorporated in a non-linear stress analysis for the prediction of reverse yielding in thick-walled cylinders during the autofrettage process of these vessels. Residual stress distributions of the independent kinematic hardening material model at the onset of reverse yielding are compared with residual stresses of an isotropic hardening model showing the significant effect of the BEF on reverse yielding predictions. Critical pressures of direct and reverse yielding are obtained for the most commonly used cylinders and a range of permissible internal pressures for an efficient autofrettaged process is recommended.

An experimental study on the difference of temperature and strength according to member size for cold weather concrete (한중콘크리트의 부재 단면별 온도범위와 강도변화특성에 관한 실험적 연구)

  • Kim, Meyong-Won;Park, Kwang-Su;Cho, Young-Kweon;Lee, Joon-Gu;Kim, Kwan-Ho
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.421-424
    • /
    • 2005
  • Discusses the results of an investigation of the relationship between maturity in field-cured specimens and that from the thinner dimension structure to thick, particularly at cold weather concrete. Tests were carried out on two different concrete mixes with 28 day compressive strengths ranging approximately 30MPa. Ready-mixed concrete was used, and test specimens were the conventional field-cured 10$\times$20cm concrete cylinder with insulating materials and without them, and test structures were the thinner(width 20cm), the general(width 40cm), the thick dimension(width 60cm), respectively. Tests were performed at age of 3, 7, 14, 28 day. Analyses of test results show that the maturity of concrete for require compressive strength was suggested to be keep higher than $164D^{circ}D$ until at least from 8day to 10day

  • PDF

Creep damage and life assessment of thick cylindrical pressure vessels with variable thickness made of 304L austenitic stainless steel

  • Kashkoli, Mosayeb Davoudi;Tahan, Khosro Naderan;Nejad, Mohammad Zamani
    • Steel and Composite Structures
    • /
    • v.32 no.6
    • /
    • pp.701-715
    • /
    • 2019
  • Using first-order shear deformation theory (FSDT), a semi-analytical solution is employed to analyze creep damage and remaining life assessment of 304L austenitic stainless steel thick (304L ASS) cylindrical pressure vessels with variable thickness subjected to the temperature gradient and internal non-uniform pressure. Damages are obtained in thick cylinder using Robinson's linear life fraction damage rule, and time to rupture and remaining life assessment is determined by Larson-Miller Parameter (LMP). The thermo-elastic creep response of the material is described by Norton's law. The novelty of the present work is that it seeks to investigate creep damage and life assessment of the vessels with variable thickness made of 304L ASS using LMP based on first-order shear deformation theory. A numerical solution using finite element method (FEM) is also presented and good agreement is found. It is shown that temperature gradient and non-uniform pressure have significant influences on the creep damages and remaining life of the vessel.

Thermoelastoplastic response of FGM linearly hardening rotating thick cylindrical pressure vessels

  • Ebrahimi, Tayebeh;Nejad, Mohammad Zamani;Jahankohan, Hamid;Hadi, Amin
    • Steel and Composite Structures
    • /
    • v.38 no.2
    • /
    • pp.189-211
    • /
    • 2021
  • An analytical solution is presented to analyze the thermoelastoplastic response of a rotating thick-walled cylindrical pressure vessel made of functionally graded material (FGM). The analysis is based on Tresca's yield condition, its associated flow rule and linear strain hardening material behaviour. The uncoupled theory of thermoelasticity is used, and the plane strain condition is assumed. The material properties except for Poisson's ratio, are assumed to vary nonlinearly in the radial direction. Elastic, partially plastic, fully plastic, and residual stress states are investigated. The heat conduction equation for the one-dimensional problem in cylindrical coordinates is used to obtain temperature distribution in the vessel. It is assumed that the inner surface is exposed to an airstream and that the outer surface is exposed to a uniform heat flux. Tresca's yield criterion and its associated flow rule are used to formulate six different plastic regions for a linearly hardening condition. All these stages are studied in detail. It is shown that the thermoelastoplastic stress response of a rotating FGM pressure vessel is affected significantly by the nonhomogeneity of the material and temperature gradient. The results are validated with those of other researchers for appropriate values of the system parameters and excellent agreement is observed.

The Thermal Stress Analysis of Axisymmetric Hollow Long Cylinder by Finite Element Method (유한요소법에 의한 축대칭 실린더의 열응력 해석)

  • Park, Jong-Gwon
    • 한국기계연구소 소보
    • /
    • s.14
    • /
    • pp.33-43
    • /
    • 1985
  • Thick cylindrical structures, such as assemblies with electrical induction heaters or nuclear fuel element, are sometimes subjected to thermal stresses from internal heating. Such stresses are produced by temperature gradients between the inside and outside surfaces. These problems possess symmetry about either a point or an axis. the objective of this paper is to present the determination of the temperature distribution and thermal stress-strain within a conducting body by finite element method.

  • PDF

Two-dimensional Stress Analysis Using Boundary Element Method (경계요소법(境界要素法)에 의한 2차원(次元) 응력해석(應力解析))

  • Chang-Doo,Jang;Sung-Hoon,Lee
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.23 no.4
    • /
    • pp.11-18
    • /
    • 1986
  • The fundamental theory and application of boundary element method for two-dimensional problem are introduced in this paper. Based on this boundary element procedure, several numerical calculations such as circular cavity problem, a thin plate with hole under tension and a long thick-walled cylinder under internal pressure are performed. The numerical results show fairly good agreement with exact solutions or results of finite element method.

  • PDF

Thermal stresses in a non-homogeneous orthotropic infinite cylinder

  • Edfawy, E.
    • Structural Engineering and Mechanics
    • /
    • v.59 no.5
    • /
    • pp.841-852
    • /
    • 2016
  • The present paper is concerned with the investigation of propagation of thermoelastic media, the finite difference technique is used to obtain the solution for the uncoupled dynamic thermoelastic stress problem in a non-homogeneous orthrotropc thick cylindrical shell. In implementing the method, the linear dynamic thermoelasticity equations are used with the appropriate boundary and initial conditions. Thermal shock stress becomes of significant magnitude due to stress wave propagation which is initiated at the boundaries by sudden thermal loading. Numerical results have been given and illustrated graphically in each case considered. The presented results indicate that the effect of inhomogeneity is very pronounced.