Browse > Article
http://dx.doi.org/10.12989/scs.2019.32.6.701

Creep damage and life assessment of thick cylindrical pressure vessels with variable thickness made of 304L austenitic stainless steel  

Kashkoli, Mosayeb Davoudi (Department of Mechanical Engineering, Shahid Chamran University of Ahvaz)
Tahan, Khosro Naderan (Department of Mechanical Engineering, Shahid Chamran University of Ahvaz)
Nejad, Mohammad Zamani (Department of Mechanical Engineering, Yasouj University)
Publication Information
Steel and Composite Structures / v.32, no.6, 2019 , pp. 701-715 More about this Journal
Abstract
Using first-order shear deformation theory (FSDT), a semi-analytical solution is employed to analyze creep damage and remaining life assessment of 304L austenitic stainless steel thick (304L ASS) cylindrical pressure vessels with variable thickness subjected to the temperature gradient and internal non-uniform pressure. Damages are obtained in thick cylinder using Robinson's linear life fraction damage rule, and time to rupture and remaining life assessment is determined by Larson-Miller Parameter (LMP). The thermo-elastic creep response of the material is described by Norton's law. The novelty of the present work is that it seeks to investigate creep damage and life assessment of the vessels with variable thickness made of 304L ASS using LMP based on first-order shear deformation theory. A numerical solution using finite element method (FEM) is also presented and good agreement is found. It is shown that temperature gradient and non-uniform pressure have significant influences on the creep damages and remaining life of the vessel.
Keywords
304L austenitic stainless steel (304L ASS); creep damage; life assessment; cylindrical pressure vessels; first-order shear deformation theory;
Citations & Related Records
Times Cited By KSCI : 8  (Citation Analysis)
연도 인용수 순위
1 Valluri, J.S., Balasubramaniam, K. and Prakash, R.V. (2010), "Creep damage characterization using non-linear ultrasonic techniques", Acta Mater., 58, 2079-2090. https://doi.org/10.1016/j.actamat.2009.11.050   DOI
2 Viswanathan, R. (1989), Damage Mechanisms and Life Assessment of High Temperature Components, ASM International, Ohio, USA.
3 Wang, Z., Palmer, T.A. and Beese, A.M. (2016), "Effect of processing parameters on microstructure and tensile properties of austenitic stainless steel 304L made by directed energy deposition additive manufacturing", Acta Mater., 110, 226-235. https://doi.org/10.1016/j.actamat.2016.03.019   DOI
4 Yang, Y. (2000), "Time-dependent stress analysis in functionally graded materials", Int. J. Sol. Struct., 37, 7593-7608. https://doi.org/10.1016/S0020-7683(99)00310-8   DOI
5 Yao, H.T., Xuan, F.Z., Wang, Z. and Tu, S.T. (2007), "A review of creep analysis and design under multi-axial stress states", Nucl. Eng. Des., 237, 1969-1986. https://doi.org/10.1016/j.nucengdes.2007.02.003   DOI
6 You, L., Ou, H. and Zheng, Z. (2007), "Creep deformations and stresses in thick-walled cylindrical vessels of functionally graded materials subjected to internal pressure", Compos. Struct., 78, 285-291. https://doi.org/10.1016/j.compstruct.2005.10.002   DOI
7 Mazarei, Z., Nejad, M.Z. and Hadi, A. (2016), "Thermo-elastoplastic analysis of thick-walled spherical pressure vessels made of functionally graded materials", Int. J. Appl. Mech., 8(4), Article Number: 1650054. https://doi.org/10.1142/S175882511650054X
8 Naumenko, K. and Altenbach, H. (2007), Modeling of Creep for Structural Analysis, Springer-Verlag Berlin Heidelberg, Berlin, Germany.
9 Nejad, M.Z. and Fatehi, P. (2015), "Exact elasto-plastic analysis of rotating thick-walled cylindrical pressure vessels made of functionally graded materials", Int. J. Eng. Sci., 86, 26-43. https://doi.org/10.1016/j.ijengsci.2014.10.002   DOI
10 Li, L., Li, X. and Hu, Y. (2016), "Free vibration analysis of nonlocal strain gradient beams made of functionally graded material", Int. J. Eng. Sci., 102, 77-92. https://doi.org/10.1016/j.ijengsci.2016.02.010   DOI
11 Sekkal, M., Fahsi, B., Tounsi, A. and Mahmoud, S.R. (2017), "A novel and simple higher order shear deformation theory for stability and vibration offunctionally graded sandwich plate", Steel Compos. Struct., Int. J., 25(4), 389-401. https://doi.org/10.12989/scs.2017.25.4.389
12 Hadi, A., Nejad, M.Z.. Rastgoo, A. and Hosseini, M. (2018a), "Buckling analysis of FGM Euler-Bernoulli nano-beams with 3D-varying properties based on consistent couple-stress theory", Steel Compos. Struct., Int. J., 26(6), 663-672. https://doi.org/10.12989/scs.2018.26.6.663
13 Nejad, M.Z., Alamzadeh, N. and Hadi, A. (2018a), "Thermoelastoplastic analysis of FGM rotating thick cylindrical pressure vessels in linear elastic-fully plastic condition", Compos. Part B-Eng., 154, 410-422. https://doi.org/10.1016/j.compositesb.2018.09.022   DOI
14 Nejad, M.Z., Hadi, A., Omidvaeri, A. and Rastgoo, A. (2018b), "Bending analysis of bi-directional functionally graded Euler-Bernoulli nano-beams using integral form of Eringen's nonlocal elasticity theory", Struct. Eng. Mech., Int. J., 67(4), 417-425. https://doi.org/10.12989/sem.2018.67.4.417
15 Robinson, E.L. (1952), "Effect of temperature variation on the long-time rupture strength of steels", Transaction ASME, 74, 777-781.
16 Samantaray, D., Borah, U., Bhaduri, A. and Dutta, P. (2016), "Effect of semi-solid heat treatment on elevated temperature plasticity of 304L stainless steel", J. Mater. Sci., 51, 4306-4319. https://doi.org/10.1007/s10853-016-9740-y   DOI
17 Simsek, M. (2016), "Buckling of Timoshenko beams composed of two-dimensional functionally graded material (2D-FGM) having different boundary conditions", Compos. Struct., 149, 304-314. https://doi.org/10.1016/j.compstruct.2016.04.034   DOI
18 Singh, T. and Gupta, V. (2010), "Modeling steady state creep in functionally graded thick cylinder subjected to internal pressure", J. Compos. Mater., 44, 1317-1333. https://doi.org/10.1177/0021998309353214   DOI
19 Singh, T. and Gupta, V. (2011), "Effect of anisotropy on steady state creep in functionally graded cylinder", Compos. Struct., 93, 747-758. https://doi.org/10.1016/j.compstruct.2010.08.005   DOI
20 Hadi, A., Nejad, M.Z. and Hosseini, M. (2018b), "Vibrations of three-dimensionally graded nanobeams", Int. J. Eng. Sci., 128, 12-23. https://doi.org/10.1016/j.ijengsci.2018.03.004   DOI
21 Jabbari, M., Nejad, M.Z. and Ghannad, M. (2015), "Thermoelastic analysis of axially functionally graded rotating thick cylindrical pressure vessels with variable thickness under mechanical loading", Int. J. Eng. Sci., 96, 1-18. https://doi.org/10.1016/j.ijengsci.2015.07.005   DOI
22 Jabbari, M., Nejad, M.Z. and Ghannad, M. (2016), "Thermoelastic analysis of axially functionally graded rotating thick truncated conical shells with varying thickness", Compos. Part B-Eng., 96, 20-34. https://doi.org/10.1016/j.compositesb.2016.04.026   DOI
23 Jandaghian, A.A. and Rahmani, O. (2017), "Vibration analysis of FG nanobeams based on third-order shear deformation theory under various boundary conditions", Steel Compos. Struct., Int. J., 25(1), 67-78. https://doi.org/10.12989/scs.2017.25.1.067
24 Jemielita, G. (2002), "Coefficients of shear correction in transversely nonhomogeneous moderately thick plates", J. Theor. Appl. Mech., 40, 73-84.
25 Kassner, M., Smith, K. and Campbell, C. (2015), "Lowtemperature creep in pure metals and alloys", J. Mater. Sci., 50, 6539-6551. https://doi.org/10.1007/s10853-015-9219-2   DOI
26 Kashkoli, M.D. and Nejad, M.Z. (2014), "Effect of heat flux on creep stresses of thick-walled cylindrical pressure vessels", J. Appl. Res. Technol., 12(3), 585-597.   DOI
27 Kashkoli, M.D. and Nejad, M.Z. (2015), "Time-dependent thermoelastic creep analysis of thick-walled spherical pressure vessels made of functionally graded materials", J. Theor. Appl. Mech., 53(4), 1053-1065. https://doi.org/10.15632/jtam-pl.53.4.1053   DOI
28 Nejad, M.Z. and Kashkoli, M.D. (2014), "Time-dependent thermocreep analysis of rotating FGM thick-walled cylindrical pressure vessels under heat flux", Int. J. Eng. Sci., 82, 222-237. https://doi.org/10.1016/j.ijengsci.2014.06.006   DOI
29 Nejad, M.Z. and Hadi, A. (2016a), "Non-local analysis of free vibration of bi-directional functionally graded Euler-Bernoulli nano-beams", Int. J. Eng. Sci., 105, 1-11. https://doi.org/10.1016/j.ijengsci.2016.04.011   DOI
30 Nejad, M.Z. and Hadi, A. (2016b), "Eringen's non-local elasticity theory for bending analysis of bi-directional functionally graded Euler-Bernoulli nano-beams", Int. J. Eng. Sci., 106, 1-9. https://doi.org/10.1016/j.ijengsci.2016.05.005   DOI
31 Nejad, M.Z. and Rahimii, G.H. (2009a), "Elastic analysis of FGM rotating cylindrical pressure vessels", J. Chin. Inst. Eng., 33(4), 525-530. https://doi.org/10.1080/02533839.2010.9671640   DOI
32 Nejad, M.Z. and Rahimii, G.H. (2009b), "Deformations and stresses in rotating FGM pressurized thick hollow cylinder under thermal load", Sci. Res. Essays., 4(3), 131-140.
33 Nejad, M.Z., Rahimii, G.H. and Ghannad, M. (2009), "Set of field equations for thick shell of revolution made of functionally graded materials in curvilinear coordinate system", Mechanika, 77(3), 18-26. https://doi.org/10.5755/j01.mech.77.3.15232
34 Nejad, M.Z., Rastgoo, A. and Hadi, A. (2014), "Exact elastoplastic analysis of rotating disks made of functionally graded materials", Int. J. Eng. Sci., 85, 47-57. https://doi.org/10.1016/j.ijengsci.2014.07.009   DOI
35 Nejad, M.Z., Jabbari, M. and Ghannad, M. (2015a), "Elastic analysis of axially functionally graded rotating thick cylinder with variable thickness under non-uniform arbitrarily pressure loading", Int. J. Eng. Sci., 89, 86-99. https://doi.org/10.1016/j.ijengsci.2014.12.004   DOI
36 Sofiyev, A.H. (2018a), "Application of the first order shear deformation theory to the solution of free vibration problem for laminated conical shells", Compos. Struct., 188, 340-346. https://doi.org/10.1016/j.compstruct.2018.01.016   DOI
37 Singh, T. and Gupta, V. (2012), "Steady-state creep analysis of a functionally graded thick cylinder subjected to internal pressure and thermal gradient", Int. J. Mater. Res., 103, 1042-1051. https://doi.org/10.3139/146.110738   DOI
38 Singh, T. and Gupta, V. (2014), "Analysis of steady state creep in whisker reinforced functionally graded thick cylinder subjected to internal pressure by considering residual stress", Mech. Adv. Mater. Struct., 21, 384-392. https://doi.org/10.1080/15376494.2012.697600   DOI
39 Sofiyev, A.H. (2017), "The stability analysis of shear deformable FGM sandwich conical shells under the axial load", Compos. Struct., 176, 803-811. https://doi.org/10.1016/j.compstruct.2017.06.022   DOI
40 Sofiyev, A.H. (2018b), "Application of the FOSDT to the solution of buckling problem of FGM sandwich conical shells under hydrostatic pressure", Compos. Part B-Eng., 144, 88-98. https://doi.org/10.1016/j.compositesb.2018.01.025   DOI
41 Sofiyev, A.H. and Osmancelebioglu, E. (2017), "The free vibration of sandwich truncated conical shells containing functionally graded layers within the shear deformation theory", Compos. Part B-Eng., 120, 197-211. https://doi.org/10.1016/j.compositesb.2017.03.054   DOI
42 Tahami, F.V., Sorkhabi, A.H.D. and Biglari, F.R. (2010), "Creep constitutive equations for cold-drawn 304L stainless steel", Mat. Sci. Eng: A, 527, 4993-4999. https://doi.org/10.1016/j.msea.2010.04.055   DOI
43 Taylor, A., Cizek, P. and Hodgson, P. (2011), "Comparison of 304 stainless steel and Ni-30 wt.% Fe as potential model alloys to study the behaviour of austenite during thermomechanical processing", Acta Mater., 59, 5832-5844. https://doi.org/10.1016/j.actamat.2011.05.060   DOI
44 Carroll, B.E., Otis, R.A., Borgonia, J.P., Suh, J.-o., Dillon, R.P., Shapiro, A.A., Hofmann, D.C., Liu, Z.-K. and Beese, A.M. (2016), "Functionally graded material of 304L stainless steel and inconel 625 fabricated by directed energy deposition: Characterization and thermodynamic modeling", Acta Mater., 108, 46-54. https://doi.org/10.1016/j.actamat.2016.02.019   DOI
45 Abdelaziz, H.H., Meziane, M.A.A., Bousahla, A.A., Tounsi, A., Mahmoud, S.R. and Alwabli, A.S. (2017), "An efficient hyperbolic shear deformation theory for bending, buckling and free vibration of FGM sandwich plates with various boundary conditions", Steel Compos. Struct., Int. J., 25(6), 693-704. https://doi.org/10.12989/scs.2017.25.6.693
46 Afshin, A., Nejad, M.Z. and Dastani, K. (2017), "Transient thermoelastic analysis of FGM rotating thick cylindrical pressure vessels under arbitrary boundary and initial conditions", J. Comput. Appl. Mech., 48(1), 15-26. https://doi.org/10.22059/JCAMECH.2017.233643.144
47 Altenbach, H., Gorash, Y. and Naumenko, K. (2008), "Steady-state creep of a pressurized thick cylinder in both the linear and the power law ranges", Acta Mech., 195, 263-274. https://doi.org/10.1007/s00707-007-0546-5   DOI
48 Kashkoli, M.D., Tahan, K.N. and Nejad, M.Z. (2017b), "Timedependent thermomechanical creep behavior of FGM thick hollow cylindrical shells under non-uniform internal pressure", Int. J. Appl. Mech., 9(6), Article Number: 1750086. https://doi.org/10.1142/S1758825117500867
49 Kashkoli, M.D. and Nejad, M.Z. (2018), "Time-dependent creep analysis and life assessment of 304 L austenitic stainless steel thick pressurized truncated conical shells", Steel Compos. Struct., Int. J., 28(3), 349-362. https://doi.org/10.12989/scs.2018.28.3.349
50 Kashkoli, M.D., Tahan, K.N. and Nejad, M.Z. (2017a), "Timedependent creep analysis for life assessment of cylindrical vessels using first order shear deformation theory", J. Mech., 33(4), 461-474. https://doi.org/10.1017/jmech.2017.6   DOI
51 Kashkoli, M.D., Tahan, K.N. and Nejad, M.Z. (2018), "Thermomechanical creep analysis of FGM thick cylindrical pressure vessels with variable thickness", Int. J. Appl. Mech., 10(1), Article Number: 1850008. https://doi.org/10.1142/S1758825118500084
52 Khanna, K., Gupta, V. and Nigam, S. (2017), "Creep analysis in functionally graded rotating disc using tresca criterion and comparison with von-mises criterion", Mater. Today, 4, 2431-2438. https://doi.org/10.1016/j.matpr.2017.02.094   DOI
53 Kobelev, V. (2014), "Some basic solutions for nonlinear creep", Int. J. Solids Struct., 51, 3372-3381. https://doi.org/10.1016/j.ijsolstr.2014.05.029   DOI
54 Nejad, M.Z., Hadi, A. and Farajpour, A. (2017a), "Consistent couple-stress theory for free vibration analysis of Euler-Bernoulli nano-beams made of arbitrary bi-directional functionally graded materials", Struct. Eng. Mech., Int. J., 63(2), 161-169. https://doi.org/10.12989/sem.2017.63.2.161
55 Nejad, M.Z., Jabbari, M. and Ghannad, M. (2015b), "Elastic analysis of FGM rotating thick truncated conical shells with axially-varying properties under non-uniform pressure loading", Compos. Struct., 122, 561-569. https://doi.org/10.1016/j.compstruct.2014.12.028   DOI
56 Nejad, M.Z., Hoseini, Z., Niknejad, A. and Ghannad, M. (2015c), "Steady-state creep deformations and stresses in FGM rotating thick cylindrical pressure vessels", J. Mech., 31(1), 1-6. https://doi.org/10.1017/jmech.2014.70   DOI
57 Nejad, M.Z. Hadi, A. and Rastgoo, A. (2016), "Buckling analysis of arbitrary two-directional functionally graded Euler-Bernoulli nano-beams based on nonlocal elasticity theory", Int. J. Eng. Sci., 103, 1-10. https://doi.org/10.1016/j.ijengsci.2016.03.001   DOI
58 Nejad, M.Z., Jabbari, M. and Ghannad, M. (2017b), "A general disk form formulation for thermo-elastic analysis of functionally graded thick shells of revolution with arbitrary curvature and variable thickness", Acta Mech., 228(1), 215-231. https://doi.org/10.1007/s00707-016-1709-z   DOI
59 Nejad, M.Z., Jabbari, M. and Hadi, A. (2017c), "A review of functionally graded thick cylindrical and conical shells", J. Comput. Appl. Mech., 48(2), 357-370. https://doi.org/10.22059/JCAMECH.2017.247963.220
60 Nejad, M.Z., Taghizadeh, T., Mehrabadi, S.J. and Herasati, S. (2017d), "Elastic Analysis of Carbon Nanotube-Reinforced Composite Plates with Piezoelectric Layers Using Shear Deformation Theory", Int. J. Appl. Mech., 9(1), Article Number: 1750011. https://doi.org/10.1142/S1758825117500119
61 Ghannad, M. Nejad, M.Z. and Rahimi, G.H. (2009), "Elastic solution of axisymmetric thick truncated conical shells based on first-order shear deformation theory", Mechanika, 79(5), 13-20. https://doi.org/10.5755/j01.mech.79.5.15476
62 Larson, F.R. (1952), "A time temperature relationship for rupture and creep stress", Trans. ASME, 765-775.
63 Li, L. and Hu, Y. (2016), "Nonlinear bending and free vibration analyses of nonlocal strain gradient beams made of functionally graded material", Int. J. Eng. Sci., 107, 77-97. https://doi.org/10.1016/j.ijengsci.2016.07.011   DOI
64 Li, L., Hu, Y. and Ling, L. (2015), "Flexural wave propagation in small-scaled functionally graded beams via a nonlocal strain gradient theory", Compos. Struct., 133, 1079-1092. https://doi.org/10.1016/j.compstruct.2015.08.014   DOI
65 Dehghan, M., Nejad, M.Z. and Moosaie, A. (2016), "Thermoelectro-elastic analysis of functionally graded piezoelectric shells of revolution: Governing equations and solutions for some simple cases", Int. J. Eng. Sci., 104, 34-61. https://doi.org/10.1016/j.ijengsci.2016.04.007   DOI
66 Dung, D.V. and Dong, D.T. (2016), "Post-buckling analysis of functionally graded doubly curved shallow shells reinforced by FGM stiffeners with temperature-dependent material and stiffener properties based on TSDT", Mech. Res. Commun., 78, 28-41. https://doi.org/10.1016/j.mechrescom.2016.09.008   DOI
67 Fatehi, P. and Nejad, M.Z. (2014), "Effects of material gradients on onset of yield in FGM rotating thick cylindrical shells", Int. J. Appl. Mech., 6(4), Article Number: 1450038. https://doi.org/10.1142/S1758825114500380
68 Ghannad, M. and Nejad, M.Z. (2010), "Elastic analysis of pressurized thick hollow cylindrical shells with clampedclamped ends", Mechanika, 85(5), 11-18. https://doi.org/10.5755/j01.mech.85.5.15963
69 Ghannad, M., Nejad, M.Z., Rahimi, G.H. and Sabouri, H. (2012), "Elastic analysis of pressurized thick truncated conical shells made of functionally graded materials", Struct. Eng. Mech., Int. J., 43(1), 105-126. https://doi.org/10.12989/sem.2012.43.1.105   DOI
70 Ghannad, M., Rahimi, G.H. and Nejad, M.Z. (2013), "Elastic analysis of pressurized thick cylindrical shells with variable thickness made of functionally graded materials", Compos. Part B-Eng., 45(1), 388-396. https://doi.org/10.1016/j.compositesb.2012.09.043   DOI
71 Gharibi, M., Nejad, M.Z. and Hadi, A. (2017), "Elastic analysis of functionally graded rotating thick cylindrical pressure vessels with exponentially-varying properties using power series method of Frobenius", J. Comput. Appl. Mech., 48(1), 89-98. https://doi.org/10.22059/jcamech.2017.233633.143
72 Lopez, H. and Zhang, H. (2014), "Nanoceria coating imperfections and their effect on the high-temperature oxidation resistance of a 304 stainless steel", J. Mater. Sci., 49, 277-286. https://doi.org/10.1007/s10853-013-7702-1   DOI
73 Loghman, A. and Wahab, M.A. (1996), "Creep damage simulation of thick-walled tubes using the Θ projection concept", Int. J. Pres. Ves. Pip., 67, 105-111. https://doi.org/10.1016/0308-0161(94)00175-8   DOI
74 Loghman, A., Arani, A.G., Amir, S. and Vajedi, A. (2010), "Magnetothermoelastic creep analysis of functionally graded cylinders", Int. J. Pres. Ves. Pip., 87, 389-395. https://doi.org/10.1016/j.ijpvp.2010.05.001   DOI
75 Loghman, A., Aleayoub, S. and Sadi, M.H. (2012), "Timedependent magnetothermoelastic creep modeling of FGM spheres using method of successive elastic solution", Appl. Math. Model., 36, 836-845. https://doi.org/10.1016/j.apm.2011.07.038   DOI
76 Mahmoud, S.R. (2017), "A new simple three-unknown shear deformation theory for bending analysis of FG plates resting on elastic foundations", Steel Compos. Struct., Int. J., 25(6), 717-726. https://doi.org/10.12989/scs.2017.25.6.717