• Title/Summary/Keyword: Thermopneumatic

Search Result 23, Processing Time 0.025 seconds

A Numerical Study on the Thermopneumatic and Flow Characteristics of Diffuser-Nozzle Based Thermopneumatic Micropumps (디퓨져와 노즐을 이용한 열공압형 마이크로 펌프의 열공압 및 유동특성에 관한 수치해석적 연구)

  • Jeong Jin;Kim Chang Nyung
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.7
    • /
    • pp.642-648
    • /
    • 2005
  • This study has been conducted to investigate the thermopneumatic and flow characteristics of diffuser/nozzle based thermopneumatic micropumps. In this study, a transient three-dimensional numerical analysis using FSI (Fluid-Structure Interaction) model has been employed to analyze the effects of the interaction between the membrane and two fluids (air and water) in the thermopneumtic micropump. The transient temperature and pressure in the cavity, the transient displacements of the membrane and the net flow rate of the micropump have been closely calculated for the frequency of 1 Hz. It has been found that the difference of the flow rates at the inlet and outlet is larger in the cooling period than in the heating period and that the duty ratio is very important in association with pump performance because the temperature in the cavity ascends drastically in the heating period and descends slowly in the cooling period. This study can be regarded as fundamental understandings for the design and analysis of thermopneumatic micropumps.

An Experimental Study on the Pumping Characteristics of Diffuser-Nozzle Based Thermopneumatic Micropumps with Different Input Voltages and Frequencies (디퓨져와 노즐을 이용한 열공압형 마이크로 펌프의 입력 전압과 주파수에 따른 펌핑 특성에 관한 실험적 연구)

  • Jeong, Jin;Chae, Hee-Moon;Kim, Chang-Nyung
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.9
    • /
    • pp.654-661
    • /
    • 2007
  • This study has been conducted to investigate the pumping characteristics of diffuser-nozzle based thermopneumatic micropumps with different input voltages and frequencies. In this study, the displacements of the membrane have been obtained changing the input voltage and frequency in load-free state because it is very difficult to measure the displacement of the membrane in an actual load state. It has been found that the amplitude of the membrane displacement increases as the input voltage increases. The pressure head of the thermopneumatic micropump increases almost linearly over some range of the input voltage and decreases almost linearly as the frequency increases. Also, the results show that the thermopneumatic micropump can pump the fluid over a certain input voltage. This study can be utilized as basic data for design and evaluation of thermopneumatic micropumps.

On the Flow and Pumping Characteristics of a Thermopneumatic Micropump with Electromagnetic Resistance for Electrically Conducting Fluids (전자기 저항을 이용한 열공압형 마이크로 펌프에서 통전유체의 유동 및 펌핑 특성에 관한 연구)

  • Oh, Se-Hong;Yong, Jung-Kwon;Kim, Chang-Nyung
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.1
    • /
    • pp.23-31
    • /
    • 2011
  • An analysis has been conducted of the flow characteristics and pumping performance of a thermopneumatic micropump with electrically conducting fluid. In the present study, considered is a thermopneumatic micropump for electrically conducting fluids with electromagnetic resistance alternately exerted at the inlet and outlet by alternately applied magnetic fields. A model of Prescribed Deformation is used for the motion of the membrane. Here, the pumping performance of the micropump and flow characteristics of the electrically conducting fluid are investigated in the range of Hartmann number less than 30. The current numerical study shows that the net flow rate through the micropump is almost proportional to the strength of the applied magnetic field.

The Influence of the Geometry on the Performance of a Thermopneumatic Micropump Operated by Capillary Attraction (모세관 인력으로 작동되는 열공압형 마이크로 펌프의 형상이 성능에 미치는 영향)

  • Jun, Do-Han;Yang, Sang-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.10
    • /
    • pp.778-782
    • /
    • 2009
  • Recently, we developed a simple thermopneumatic micropump having neither a membrane nor a valve. This micropump discharges liquid by a thermopneumatic pressure and refill by a capillary attraction. In case of the micropump driven by the capillary attraction, the flow characteristic depends mainly on the geometry of the micropump. In this paper, we investigated the influence of the geometry of the micropump on the performance of the micropump to illustrate the properness of the micropump shape. We analyzed the micropump characteristics of six types having different geometries by FVM simulation with a commercial CFD tool. Also we fabricated the micropumps with PDMS and glass by micromachining, and tested the performances. The simulation and the test results illustrate that the discharge volume and the discharge time depend on the chamber volume. The expansion angle of the inlet channel location has influence on the refill time, while the front air channel direction has influence on the backward flow loss.

Fabrication and Characteristics of Thermopneumatic-Actuated Polydimethylsiloxane Microvalve (열공압 방식의 Polydimethylsiloxane 마이크로 밸브의 제작 및 특성)

  • 김진호;조주현;한경희;김영호;김한수;김용상
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.4
    • /
    • pp.231-236
    • /
    • 2004
  • A normally open thermopneumaticc-actuated microvalve has been fabricated and their properties are investigated. The advantages of the proposed microvalve are of the low cost fabrication process and the transparent optical property using polydimethylsiloxane (PDMS) and indium tin oxide (ITO) glass. The fabricated microvalves with in-channel configuration are easily integrated with other microfluidic devices on the same substrate. The fabrication process of thermopneumatic-actuated microvalvesusing PDMS is very simple and its performance is very suitable for a disposable lab-on-a-chip. The PDMS membrane deflection increases and the flow rates of the microchannel with microvalvels decrease as the applied power to the ITO heater increases. The powers at flow-off are dependent on the membrane thickness and the applied inlet pressure but are independent of the channel width of microvalves. The flow rate is well controlled by the switching function of ITO heater and the closing/opening times are around 20 sec and 25 sec, respectively.

Fabrication and Characteristics of Thermopneumatic-Actuated Polydimethylsiloxane Micropump (열공압 방식의 polydimethylsiloxane 마이크로 펌프의 제작 및 특성)

  • 김진호;문민철;김주호;김영호;김한수;한경희;김용상
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.6
    • /
    • pp.342-346
    • /
    • 2004
  • A thermopneumatic-actuated polydimethylsiloxane (PDMS) micropump has been fabricated and their properties are characterized. The diffusers are used as a flow-rectifying element instead of passive check valves. The advantages of the proposed microvalve are of the low cost fabrication process and the transparent optical property using PDMS and indium tin oxide (ITO) glass. We presented the PDMS micropump that is easily integrated with the in-channel PDMS microvalves on the same substrate. The flowrate of the micropump increases linearly as the applied pulse voltage to the ITO heater increases. The fabricated ITO heater resistance is 6.54k$\Omega$. The peak of the flow rate is observed at the duty ratio of 10% for the applied pulse voltage of 55V at 6Hz and the maximum flow rate of 78nl/min is measured.

Development of a Die Ejector Using Thermopneumatic System (열 공압 방식을 이용한 다이 이젝터의 개발)

  • Jeong Hwan Yun;An Mok Jeong;Hak Jun Lee
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.3
    • /
    • pp.1-7
    • /
    • 2023
  • Recently, in the semiconductor industry, memory device market is focusing on producing ultra-thin wafers for high integration. In the wafer manufacturing process, wafers after backgrinding and CMP process must be picked up as individual dies and subjected to be peeled off from the dicing tape. However, ultra-thin dies are vulnerable to the possibility of breakage and failure in their thickness and size. This research studies the mechanism of peeling a die with a high-aspect ratio using a thermopneumatic method instead of a die ejector with physical pins. Setting compressed air and the temperature as main factors, we determine the success of the digester using thermopneumatic system and analyze the good die to find the possibility of making mass-production equipment.

  • PDF

Fabrication of a Thermopneumatic Valveless Micropump with Multi-Stacked PDMS Layers

  • Jeong, Ok-Chan;Jeong, Dae-Jung;Yang, Sang-Sik
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.4C no.4
    • /
    • pp.137-141
    • /
    • 2004
  • In this paper, a thermopneumatic PMDS (polydimethlysiloxane) micropump with nozzle/diffuser elements is presented. The micropump is composed of nozzle/diffuser elements as dynamic valves, an actuator consisting of a circular PDMS diaphragm and a Cr/Au heater on a glass substrate. Four PDMS layers are used for fabrication of an actuator chamber, actuator diaphragm by a spin coating process, spacer layer, and nozzle/diffuser by the SU-8 molding process. The radius and thickness of the actuator diaphragm is 2 mm and 30 ${\mu}{\textrm}{m}$, respectively. The length and the conical angle of the nozzle/diffuser elements are 3.5 mm and 20$^{\circ}$, respectively. The actuator diaphragm is driven by the air cavity pressure variation caused by ohmic heating and natural cooling. The flow rate of the micropump in the frequency domain is measured for various duty cycles of the square wave input voltage. When the square wave input voltage of 5 V DC is applied to the heater, the maximum flow rate of the micropump is 44.6 ${mu}ell$/min at 100 Hz with a duty ratio of 80% under the zero pressure difference.

A study on the Thermopneumatic Actuator with Phase Change for Micro Pump (상변화를 이용한 열공압형 마이크로 펌프용 액츄에이터 성능에 관한 연구)

  • Park, S.;Hwang, J.Y.;Lee, S.;Kang, K.;Kang, H.;Jang, J.;Lee, H.;Kang, S.
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.425-428
    • /
    • 2006
  • Recently, Direct Methanol Fuel Cell (DMFC) for portable devices has been received much attention because DMFC has a possibility of higher energy density than electrical batteries and smaller size than other fuel cells. This paper presents the fabrication and test of a thermopneumatic microactuator with a phase change for DMFC. A microactuator consists of an inlet an outlet a chamber, a heater and a sensor of resistance temperature detector(RTD). The micoractuator is fabricated by the spin-coating process, the lithograph process, the deep RIE process and so on. The total size of microactuator is $20{\times}20{\times}0.53mm^3$. When the current is applied, the heater heats liquid in chamber. As a result the liquid vaporizes. The response of temperature in the chamber was measured using thermocouple The changed temperature is $3^{\circ}C$ for 5 sec at 0.032W.

  • PDF