• Title/Summary/Keyword: Thermoplastic polyurethane

Search Result 81, Processing Time 0.034 seconds

Synthesis and Characterization of GAP or GAP-co-BO Copolymer-based Energetic Thermoplastic Polyurethane (GAP 및 GAP-co-BO Copolymer계 에너지 함유 열가소성 폴리우레탄의 합성 및 특성)

  • Seol, Yang-Ho;Kweon, Jeong-Ohk;Kim, Yong-Jin;Jin, Yong-Hyun;Noh, Si-Tae
    • Applied Chemistry for Engineering
    • /
    • v.30 no.6
    • /
    • pp.673-680
    • /
    • 2019
  • GAP or GAP-co-BO based energetic thermoplastic elastomers (ETPEs) were synthesized by changing the hard segment content percent in the range of 30~45% by 5% difference. Thermal and mechanical properties of GAP-co-BO based ETPEs were compared to those of GAP based ETPEs. FT-IR results showed that the capability of forming hydrogen bond increases with increasing the hard segment content in GAP/GAP-co-BO based ETPE, and also the GAP-co-BO based ETPEs are stronger than GAP based ETPEs in the hydrogen bond formation. DSC and DMA results showed that the glass transition temperature (Tg) of GAP based ETPEs increased with the increment of the hard segment content, while the Tg of GAP-co-BO based ETPEs was maintained even the hard segment content increased. The storage modulus at room temperature of the GAP-co-BO based ETPEs was higher than that of the GAP based ETPEs. This was due to the strong phase separation behavior of the hard and soft segment of GAP-co-BO based ETPEs, which further resulted in the stronger breaking strength and lower tensile elongation at break point for GAP-co-BO based ETPE than the GAP based one.

Structural Analysis of TPU Membrane Plate in Multi-purpose Module for Solid-liquid Separation (TPU 재질을 적용한 다목적 고액분리 모듈의 여과판 구조해석)

  • Jung, Hee Suk;Oh, Doo Young;Ko, Dong Shin;Song, Hyoung Woon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.25 no.1
    • /
    • pp.5-13
    • /
    • 2017
  • Polypropylene is the main existing material in the domestic market being used for the filter plate because of its moldability, low cost, and commercial availability. Polypropylene filter plate once distorted due to the high-pressure during operation may cause the problem in the continuous operation of the solid-liquid separation module. Thermoplastic Poly Urethane (TPU) can be a high-performance alternative material for the filter plate in the solid-liquid separation module of the dehydration process. Hence, to predict and evaluate the TPU for structural stability in the filter plate through analytical techniques designed and experimental verification is essential. As a result, TPU filter plate had maximum strain of 27.85 MPa at 20 bar pressure condition. This result is less than TPU stress-strain limit, which ensures the structural stability of the TPU material.

Comparison of Heating Behavior of Various Susceptor-embedded Thermoplastic Polyurethane Adhesive Films via Induction Heating (다양한 발열체가 분산된 폴리우레탄 접착 필름의 유도가열 거동 비교)

  • Kwon, Yongsung;Bae, Duckhwan;Shon, MinYoung
    • Composites Research
    • /
    • v.30 no.3
    • /
    • pp.181-187
    • /
    • 2017
  • The effect of nanoscopic and microscopic Fe, $Fe_3O_4$, and Ni particles and their shapes and substrate materials on the heating behavior of thermoplastic polyurethane (TPU) adhesive films was investigated via induction heating. The heat generation tendency of $Fe_3O_4$ particles was higher than that shown by Fe and Ni particles in the TPU adhesive films. When the Fe and Ni particle size was larger than the penetration skin depth, the initial heating rate and maximum temperature increased with an increase in the particle size. This is attributed to the eddy current heat loss. The heating behavior of the TPU films with Ni particles of different shapes was examined, and different hysteresis heat losses were observed depending on the particle shape. Consequently, the flake-shaped Ni particles showed the most favorable heat generation because of the largest hysteresis loss. The substrate materials also affected the heating behavior of the TPU adhesive films in an induction heating system, and the thermal conductivity of the substrate materials was determined to be the main factor affecting the heating behavior.

Thermal Degradation of Thermoplastic Polyurethane Modified with Polycarbonate (열가소성 폴리우레탄으로 개질된 폴리카보네이트에서 TPU의 열분해)

  • 권회진;차윤종;최순자
    • Polymer(Korea)
    • /
    • v.24 no.3
    • /
    • pp.314-325
    • /
    • 2000
  • Thermal degradation of thermoplasitc polyurethane modified polycarbonate has been investigated by means of DSC, GPC and FT-IR techniques. The polyurethanes used in this study are TPU-35 and TPU-53 containing 35.5 and 53.4 wt% of hard segments, respectively. The more content of hard segment, the higher the glass transition temperature (T$_{g}$) of TPU was observed. On the other hand, the T$_{g}$ of the TPU modified PC decreased with the content of TPU and the annealing temperature regardless of the hard segment contents. The latter behavior nay arise from the thermal degradation of TPU upon annealing process: the observed thermal degradation temperatures were at 240 and 25$0^{\circ}C$ for the PC/TPU-35 and PC/TPU-53, respectively. The molecular weight, molecular weight distribution and viscosity agree well with the DSC measurement, which implicates a thermal degradation of TPU. In addition, thermal stability of the TPU modified PC linearly decreased with an incorporation of TPU. Transesterification or any interaction was not observed using FT-IR: the evidence was no frequency shift or any variance betwere the carbonyl stretching and NH group. For the specimens prepared below the degradation temperature, the enhancement of the thickness dependent impact strength of the PC/TPU blend was observed, and the morphology of the two blends was compared.d.

  • PDF

Characterization for Pyrolysis of Thermoplastic Polyurethane by Thermal Analyses

  • Kang Suk-Hwan;Ku Dong-Cheol;Lim Jung-Hun;Yang Yun-Kyu;Kwak Noh-Seok;Hwang Taek-Sung
    • Macromolecular Research
    • /
    • v.13 no.3
    • /
    • pp.212-217
    • /
    • 2005
  • The pyrolysis kinetics of polyurethanes synthesized from polycaprolactone diol (PCL) and diisocyanate (HDI, $H_{12}MDI$) using catalysts such as dibutyltin dilaurate (DBTDL) were studied by a thermogravimetric (TG) technique, which involved heating the sample at the rates of 10, 20 and $30^{\circ}C$/min. The effect of the kind of diisocyanate and the hard segment contents on the activation energy and reaction order were examined at conversions ranging from 1 to $100\%$. The activation energies at first increased slowly with increasing conversion. Also, differential scanning calorimetry (DSC) was used to investigate the structural differences in each polyurethane. DSC can reveal the melting behavior, in terms of the glass transition temperature ($T_g$), which is known to vary as a function of the stoichiometry and processing conditions.

A Study on the Effect of Primer Processing Method on the Mechanical Properties of Impact Relief Air Cushion Materials Prepared through Thermal Film Laminating (프라이머 가공 방법이 열융착 필름 라미네이팅으로 제조한 고충격 대응 에어쿠션 소재의 물성에 미치는 영향 연구)

  • Kim, Ji Yeon;Kim, Hun Min;Min, Mun Hong
    • Textile Coloration and Finishing
    • /
    • v.34 no.3
    • /
    • pp.173-184
    • /
    • 2022
  • In this study, the TPU film was laminated on an aramid fabric or circular knits in order to implement an air cushion material that can respond to high impact forces in case of a fall and is easy to expand. To increase the bonding strength between the fabric layer and the film layer, a primer layer was formed in two ways: one for thermally bonding and laminating PET film and two for coating and aging hot melt type PUR adhesive. The tensile strength of the aramid air cushion was 2.5 times higher than that of the circular knits, but the tensile elongation of the aramid air cushion was very low compared to that of the circular knits. The tear strength of the aramid air cushion was about twice or more superior to that of the circular knits, the primer treatment method was good at A, and the peel strength was excellent at method A. The aramid air cushion was the lightest in weight. Summarizing the above results, it was best to combine the air cushion material with aramid woven fabric and primer treatment method A to cope with the high impact force applied when falling.

Preparation and Properties of Eco-friendly Waterborne Polyurethane-urea Primer for Thermoplastic Polypropylene Applied to Automobile Interiors (자동차 내장재용 열가소성 폴리프로필렌에 적용되는 선처리제용 친환경 수분산 폴리우레탄-우레아의 제조 및 성질)

  • Shin, Jong Sub;Park, Jin Myeong;Lee, Young Hee;Kim, Han Do
    • Clean Technology
    • /
    • v.20 no.3
    • /
    • pp.232-240
    • /
    • 2014
  • The significance of thermoplastic polyolefin polypropylene (PP) lies in its potential to replace polyvinyl chloride (PVC), the most widely used material for automobile interiors (door trim, dash board), which discharges harmful compounds in certain conditions. Another benefit of PP (0.855 amorphous - 0.946 crystalline $g/cm^3$) is its low density compared to that of PVC ($1.1-1.45g/cm^3$), which reduces vehicle weight. Market demand for eco-friendly water-based adhesive/coating material is rising significantly as a substitute for solvent-based adhesive/coating material which emits VOC and causes harmful working conditions. Under such context, in this study, a series of eco-friendly waterborne polyurethane-urea primer (a paint product that allows finishing paint to adhere much better than if it were used alone) for hydrophobic PP were prepared from different mix of DMPA content, NCO/OH molar ratio, various wt% of silicone diol and various soft segment content, among which DMPA of 21 mole %, NCO/OH molar ratio of 1.2, modified silicone diol of 5 wt% and soft segment content of 73 wt% led to good adhesion strength. Additionally, the incorporation of optimum content of additives (0.5 wt% dispersing agent, 0.5 wt% levelling agent, 1.5 wt% antifoaming agent, 3.0 wt% matting agent) into the optimum waterborne polyurethane-urea also enabled good stability, levelling, antifoaming and non-glossy.

CNT Buckypaper-Polyurethane Composite with Enhanced Strength, Toughness and Flexible (고강도, 고강성, 그리고 유연한 탄소나노튜브 버키페이퍼-폴리우레탄 나노복합체)

  • Ha, Yu-Mi;Lim, Da-un;Kim, Yoong Ahm;Jung, Yong Chae
    • Composites Research
    • /
    • v.29 no.4
    • /
    • pp.161-166
    • /
    • 2016
  • Carbon nanotube buckypaper (CNTs-BP)/thermoplastic polyurethane (PU) elastomer composites were successfully fabricated. The CNTs-BP/PU nanocomposites exhibited simultaneous improvements in both tensile modulus and strength by 1360 and 430%, respectively, as compared to pure PU. Possible reinforcing mechanisms were evidenced by SEM analyses and tensile tests. The CNTs-BP/PU nanocomposites can be potentially used as an inter-reinforcing agent in ultra-lightweight, high-strength aircraft, carbon-fiber-reinforced plastics, etc.

Development of two-component polyurethane metering system for in-mold coating (인몰드 코팅을 위한 2액형 폴리우레탄 공급장치 개발)

  • Seo, Bong-Hyun;Lee, Ho-Sang
    • Design & Manufacturing
    • /
    • v.10 no.2
    • /
    • pp.18-23
    • /
    • 2016
  • Injection molded thermoplastic parts may need to be coated to facilitate paint adhesion, or to satisfy other surface property requirements, such as appearance, durability, and weather resistance. In this paper, a two-component polyurethane metering system was developed for the simultaneous injection and surface coating of a plastic substrate. The system was composed of storage tanks, feed pumps, axial piston pumps, mixing head. The tank was designed to be double-jacket structured and fabricated for polyol and isocyanate, respectively. A temperature chamber was used to maintain the material temperature to be $80^{\circ}C$ during flowing from storage tank to mixing head. Inside the chamber, feed pump, low pressure filter, high pressure pump, high pressure filter, pressure sensor, flow meter were installed. A mixing head of L-type was used for homogeneous mixing of polyol and isocyanate. Inside the mixing head, a cartridge heater and a temperature sensor were installed to control the temperature of the materials. The flow rate of axial-piston pump was controlled by using closed-loop feedback control algorithm. The input flow-rates were compared with the measured values. The output error was 6.7% for open-loop control, whereas the error was below 2.2% for closed-loop control. In addition, the pressure generated through mixing-head nozzle increased with increasing flow rate. It was found that the pressure drop between metering pump and mixing-head nozzle was almost 10 bar.

Mechanical Property of Segmented Block Copolyetherester Effected by Changing the Hard Segment(II) (하드 세그멘트 구조 변화가 세그멘트화 블록 코폴리에테르에스테르의 기계적 성질에 미치는 효과(II))

  • Kim, Hae-Young;Jang, Kyung-Ho;Baik, Doo-Hyun
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.04a
    • /
    • pp.329-330
    • /
    • 2003
  • In general, the thermoplastic elastomers have the elastic recovery property caused by phyical crosslinks after the stress is applied. Segmented block copolyetheresters also have been used as elastomers. Many$\^$l-2/ tried to improve the elastic recovery of those which are less elastic than polyurethane. We confirmed that the copolyetherester based on poly(2,6-butylene naphthalate)(PBN) ha.4 segment had the high melting temperature, whcih was useable at the broader temperature range and the one based on poly(1,3-trimethylene terephthalate)(PTT) the high crystallinity, which would be expected to get the high elastic recovery. (omitted)

  • PDF