Browse > Article

Characterization for Pyrolysis of Thermoplastic Polyurethane by Thermal Analyses  

Kang Suk-Hwan (School of Chemical Engineering, Chungnam National University)
Ku Dong-Cheol (School of Chemical Engineering, Chungnam National University)
Lim Jung-Hun (School of Chemical Engineering, Chungnam National University)
Yang Yun-Kyu (School of Chemical Engineering, Chungnam National University)
Kwak Noh-Seok (School of Chemical Engineering, Chungnam National University)
Hwang Taek-Sung (School of Chemical Engineering, Chungnam National University)
Publication Information
Macromolecular Research / v.13, no.3, 2005 , pp. 212-217 More about this Journal
Abstract
The pyrolysis kinetics of polyurethanes synthesized from polycaprolactone diol (PCL) and diisocyanate (HDI, $H_{12}MDI$) using catalysts such as dibutyltin dilaurate (DBTDL) were studied by a thermogravimetric (TG) technique, which involved heating the sample at the rates of 10, 20 and $30^{\circ}C$/min. The effect of the kind of diisocyanate and the hard segment contents on the activation energy and reaction order were examined at conversions ranging from 1 to $100\%$. The activation energies at first increased slowly with increasing conversion. Also, differential scanning calorimetry (DSC) was used to investigate the structural differences in each polyurethane. DSC can reveal the melting behavior, in terms of the glass transition temperature ($T_g$), which is known to vary as a function of the stoichiometry and processing conditions.
Keywords
polyol; diisocyanate; activation energy; glass transition temperature;
Citations & Related Records

Times Cited By Web Of Science : 8  (Related Records In Web of Science)
Times Cited By SCOPUS : 7
연도 인용수 순위
1 N. R. Legge, G. Hodlen, H. E. Schroeder, Thermoplastic Elastomers, Hanser Publishers, Munich, 1987, p. 16
2 B. Chiou and P. E. Schoen, J. Appl. Polym. Sci., 83, 212 (2002)   DOI   ScienceOn
3 C. Rotival, E. Renacco, C. Arfi, A. M. Pauli, and J. Pastor, J. Thermal Anal., 41, 1519 (1994)   DOI   ScienceOn
4 D. Y. Takamoto and M. A. Petrich, Ind. Eng. Chem. Res., 33, 3004 (1994)   DOI   ScienceOn
5 M. M. Esperanza, R. Font, and A. N. Garcia, J. Hazard. Mater., 77, 107 (2000)   DOI
6 S. H. Kang, S. M. Son, C. G. Lee, S. H. Jung, Y. Kang, and M. J. Choi, Int'l Sym. Green Technology for Resources and Materials Recycling, 271 (2004)
7 C. G. Lee, S. H. Kang, J. S. Kim, J. S. Yun, Y. Kang, and M. J. Choi, J. Korean Ind. Eng. Chem., 15, 188 (2004)
8 Z. Wirpsza, Polyurethanes; Chemistry, Technology and Applications, Ellis Horwood, New York, 1993, pp 1-6
9 M. Herrera, G. Matuscheka, and A. Kettrupa, Polym. Degrad. Stabil., 78, 323 (2002)   DOI   ScienceOn
10 T. K. Kwei, J. Appl. Polym. Sci., 28, 2891 (1982)
11 H. L. Friedman, J. Polym. Sci. Part C, 6, 183 (1963)
12 J. H. Yang, B. C. Chun, Y. C. Chung, and J. H. Cho, Polymer, 44, 3251 (2003)   DOI   ScienceOn
13 G. Woods, The ICI Polyurethanes Book, 2nd ed., John Wiley & Sons, Chichester, 1990
14 M. S. Sanchez-Adsuar, E. Papon, and J.-J. Villenave, J. Appl. Polym. Sci., 76, 1596 (2000)   DOI   ScienceOn
15 S.-M. Kim, N.-S. Kwak, Y.-K. Yang, B.-K. Yim, B.-Y. Park, and T.-S. Hwang, Polymer(Korea), 29, 253 (2005)
16 R. Font, A. Fullana, J. A., Caballero, J. Candela, and A. Garcia, J. Appl. Polym. Sci., 58-59, 63 (2001)
17 A. Frick and A. Rochman, Polymer Testing, 23, 413 (2004)   DOI   ScienceOn