Characterization for Pyrolysis of Thermoplastic Polyurethane by Thermal Analyses

  • Kang Suk-Hwan (School of Chemical Engineering, Chungnam National University) ;
  • Ku Dong-Cheol (School of Chemical Engineering, Chungnam National University) ;
  • Lim Jung-Hun (School of Chemical Engineering, Chungnam National University) ;
  • Yang Yun-Kyu (School of Chemical Engineering, Chungnam National University) ;
  • Kwak Noh-Seok (School of Chemical Engineering, Chungnam National University) ;
  • Hwang Taek-Sung (School of Chemical Engineering, Chungnam National University)
  • 발행 : 2005.06.01

초록

The pyrolysis kinetics of polyurethanes synthesized from polycaprolactone diol (PCL) and diisocyanate (HDI, $H_{12}MDI$) using catalysts such as dibutyltin dilaurate (DBTDL) were studied by a thermogravimetric (TG) technique, which involved heating the sample at the rates of 10, 20 and $30^{\circ}C$/min. The effect of the kind of diisocyanate and the hard segment contents on the activation energy and reaction order were examined at conversions ranging from 1 to $100\%$. The activation energies at first increased slowly with increasing conversion. Also, differential scanning calorimetry (DSC) was used to investigate the structural differences in each polyurethane. DSC can reveal the melting behavior, in terms of the glass transition temperature ($T_g$), which is known to vary as a function of the stoichiometry and processing conditions.

키워드

참고문헌

  1. G. Woods, The ICI Polyurethanes Book, 2nd ed., John Wiley & Sons, Chichester, 1990
  2. Z. Wirpsza, Polyurethanes; Chemistry, Technology and Applications, Ellis Horwood, New York, 1993, pp 1-6
  3. R. Font, A. Fullana, J. A., Caballero, J. Candela, and A. Garcia, J. Appl. Polym. Sci., 58-59, 63 (2001)
  4. A. Frick and A. Rochman, Polymer Testing, 23, 413 (2004) https://doi.org/10.1016/j.polymertesting.2003.09.013
  5. S.-M. Kim, N.-S. Kwak, Y.-K. Yang, B.-K. Yim, B.-Y. Park, and T.-S. Hwang, Polymer(Korea), 29, 253 (2005)
  6. N. R. Legge, G. Hodlen, H. E. Schroeder, Thermoplastic Elastomers, Hanser Publishers, Munich, 1987, p. 16
  7. B. Chiou and P. E. Schoen, J. Appl. Polym. Sci., 83, 212 (2002) https://doi.org/10.1002/app.10056
  8. M. S. Sanchez-Adsuar, E. Papon, and J.-J. Villenave, J. Appl. Polym. Sci., 76, 1596 (2000) https://doi.org/10.1002/(SICI)1097-4628(20000606)76:10<1596::AID-APP15>3.0.CO;2-U
  9. M. Herrera, G. Matuscheka, and A. Kettrupa, Polym. Degrad. Stabil., 78, 323 (2002) https://doi.org/10.1016/S0141-3910(02)00181-7
  10. C. Rotival, E. Renacco, C. Arfi, A. M. Pauli, and J. Pastor, J. Thermal Anal., 41, 1519 (1994) https://doi.org/10.1007/BF02549949
  11. D. Y. Takamoto and M. A. Petrich, Ind. Eng. Chem. Res., 33, 3004 (1994) https://doi.org/10.1021/ie00036a015
  12. M. M. Esperanza, R. Font, and A. N. Garcia, J. Hazard. Mater., 77, 107 (2000) https://doi.org/10.1016/S0304-3894(00)00182-5
  13. C. G. Lee, S. H. Kang, J. S. Kim, J. S. Yun, Y. Kang, and M. J. Choi, J. Korean Ind. Eng. Chem., 15, 188 (2004)
  14. H. L. Friedman, J. Polym. Sci. Part C, 6, 183 (1963)
  15. S. H. Kang, S. M. Son, C. G. Lee, S. H. Jung, Y. Kang, and M. J. Choi, Int'l Sym. Green Technology for Resources and Materials Recycling, 271 (2004)
  16. T. K. Kwei, J. Appl. Polym. Sci., 28, 2891 (1982)
  17. J. H. Yang, B. C. Chun, Y. C. Chung, and J. H. Cho, Polymer, 44, 3251 (2003) https://doi.org/10.1016/S0032-3861(03)00260-X