• 제목/요약/키워드: Thermoelectric heating/cooling

검색결과 45건 처리시간 0.023초

열전소자를 이용한 차량용 독립 냉난방시스템에 대한 실험적 연구 (Experimental Study of Standalone Cooling and Heating System using Thermoelectric Element for Vehicles)

  • 이대웅
    • 설비공학논문집
    • /
    • 제26권8호
    • /
    • pp.375-380
    • /
    • 2014
  • The purpose of this paper is to investigate the cooling and heating performance of a standalone-type thermoelectric system equipped with a thermoelectric module. The system consists of a blower and two thermoelectric modules with a fin, which is soldered onto both sides of the thermoelectric module and a courtesy light. The thermoelectric system experiment is conducted with the intake voltage to find the optimum cooling and heating performance of each. The results showed that the cooling capacity and coefficient of performance (COP) were 22 W and 0.31, and the heating capacity and COP were 147 W and 1.1, respectively. In the vehicle cooling and heating performance test in a climate wind tunnel, the results showed that the standalone thermoelectric system's cooling performance was slightly better than the base system; and the heating performance of the standalone thermoelectric system was $54.1^{\circ}C$ and the COP was 1.3, compared to the base system.

열전모듈을 이용한 자동차용 1 kW급 보조 냉난방 시스템의 성능에 관한 실험적 연구 (An Experimental Study on the Supplemental Cooling and Heating Performance Using 1 kW Thermoelectric Module for Vehicle)

  • 이대웅
    • 설비공학논문집
    • /
    • 제26권5호
    • /
    • pp.224-230
    • /
    • 2014
  • The purpose of this paper is to investigate the performance of supplemental cooling and heating system equipped with the 1 kW thermoelectric module. The system consist of 96 thermoelectric modules, heat sink with louver fin and water cooling jacket which is attached on the hot side of the thermoelectric module. The cooling and heating performance test of the thermoelectric system is conducted with various conditions, such as intake voltage, air inlet temperature, air flow volume, water inlet temperature and water flow rate at calorimeter chamber in consideration of environmental conditions in realistic vehicle drive. The experimental results of a thermoelectric system shows that the cooling capacity and COP is 1.03 kW, and 1.0, and heating capacity and COP is 1.53 kW, and 1.5 respectively.

승용차 시트 쿨링 & 히팅 모듈의 구조 타당성 검증을 위한 유동 전산모사 (Flow Simulation for Structure Validation of Passenger Car Seat Cooling & Heating Module)

  • 고가진;박설현;마상동;김재열
    • 한국기계가공학회지
    • /
    • 제18권2호
    • /
    • pp.108-113
    • /
    • 2019
  • Due to the special structure of the car seat, the heating and cooling module must be installed in a limited area resulting in difficulty in regards to achieving optimal cooling and heating efficiency. In order to solve these problems, this paper establishes a new structure for heating and cooling modules, verifies the structural feasibility of the thermoelectric module for cooling and heating the seat through fluid simulations, and verifies the proper design of the mechanical components of the thermoelectric module.

매트용 냉난방 시스템 개발 (Development of Cooling and Heating System for Matt)

  • 조현섭
    • 한국산학기술학회:학술대회논문집
    • /
    • 한국산학기술학회 2008년도 춘계학술발표논문집
    • /
    • pp.163-166
    • /
    • 2008
  • This study developed matt used by thermoelectric device to use both cooling and heating. To develop this system, heating system used sheath heater and cooling system used thermoelectric device. A Flow of water controlled by a capillary tube system made by polymethyl. Results by this system very lowered spending of energy.

  • PDF

복합재료에 의한 열전변환 냉각소자의 개발에 관한 연구 (Experimental fabrication and analysis of thermoelectric devices)

  • 성만영;송대식;배원일
    • E2M - 전기 전자와 첨단 소재
    • /
    • 제9권1호
    • /
    • pp.67-75
    • /
    • 1996
  • This paper has presented the characteristics of thermoelectric devices and the plots of thermoelectric cooling and heating as a function of currents for different temperatures. The maximum cooling and heating(.DELTA.T) for (BiSb)$\_$2/Te$\_$3/ and Bi$\_$2/(TeSe)$\_$3/ as a function of currents is about 75.deg. C, A solderable ceramic insulated thermoelectric module. Each module contains 31 thermoelectric devices. Thermoelectric material is a quaternary alloy of bismuth, tellurium, selenium, and antimony with small amounts of suitable dopants, carefully processed to produce an oriented polycrystalline ingot with superior anisotropic thermoelectric properties. Metallized ceramic plates afford maximum electrical insulation and thermal conduction. Operating temperature range is from -156.deg. C to +104.deg. C. The amount of Peltier cooling is directly proportional to the current through the sample, and the temperature gradient at the thermoelectric materials junctions will depend on the system geometry.

  • PDF

Design and Preparation of High-Performance Bulk Thermoelectric Materials with Defect Structures

  • Lee, Kyu Hyoung;Kim, Sung Wng
    • 한국세라믹학회지
    • /
    • 제54권2호
    • /
    • pp.75-85
    • /
    • 2017
  • Thermoelectric is a key technology for energy harvesting and solid-state cooling by direct thermal-to-electric energy conversion (or vice versa); however, the relatively low efficiency has limited thermoelectric systems to niche applications such as space power generation and small-scale or high-density cooling. To expand into larger scale power generation and cooling applications such as ATEG (automotive thermoelectric generators) and HVAC (heating, ventilation, and air conditioning), high-performance bulk thermoelectric materials and their low-cost processing are essential prerequisites. Recently, the performance of commercial thermoelectric materials including $Bi_2Te_3$-, PbTe-, skutterudite-, and half-Heusler-based compounds has been significantly improved through non-equilibrium processing technologies for defect engineering. This review summarizes material design approaches for the formation of multi-dimensional and multi-scale defect structures that can be used to manipulate both the electronic and thermal transport properties, and our recent progress in the synthesis of conventional thermoelectric materials with defect structures is described.

대형 하이브리드 트럭용 열전 무시동 공조시스템 성능 연구 (Performance of Non-starting Conditioning System using Thermoelectric Modules for Hybrid Heavy Trucks)

  • 박경민
    • Tribology and Lubricants
    • /
    • 제29권5호
    • /
    • pp.310-317
    • /
    • 2013
  • To reduce vehicle fuel consumption due to not only driving but also air conditioning, battery-operated non-starting conditioning systems with thermoelectric modules and without mechanical elements like compressors are being manufactured for use by hybrid heavy trucks in the near future. In this study, the voltage and current consumed by a thermoelectric module were measured to determine the required battery power, and the performance of the conditioning system with air temperature, and humidity of the inlet/outlet modules and inside/outside the cabin for a truck, was evaluated using experimental apparatus under actual conditions. The results showed that, the thermoelectric module can be continously operated for about 1.5 h using existing 24 V batteries. The coefficent of performance(COP) of the cooling and heating modes was calculated to be an average 0.8-1.32. As expected, the heating performance was 30% more efficient than the cooling performance, which is general characteristic of thermoelectric modules.

열전냉각 모듈을 이용한 국소 냉각에 관한 연구 (A Study on the Hot Spot Cooling Using Thermoelectric Cooler)

  • 김욱중;이공훈
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2007년도 동계학술발표대회 논문집
    • /
    • pp.640-645
    • /
    • 2007
  • An experimental apparatus to show the hot spot cooling of an IC chip using a thermoelectric cooler is developed. The spot heating in very small area is achieved by the applying CO$_2$ laser source and temperatures are measured using miniature thermocouples. The active effects of thermoelectric cooler on the hot spot cooling system such as rapid heat spreading in the chip and lowering the peak temperature around the hot spot region are investigated. The experimental results are simulated numerically using the TAS program, which the performance characteristics such as Seebeck coefficient, electrical resistance and thermal conductivity of the thermoelectric cooler are searched by trial and error. Good agreements are obtained between numerical and experimental results if the appropriate performance data of the thermoelectric cooler are given.

  • PDF

자연대류에서 유한요소법을 이용한 히트싱크의 성능비교 (A performance comparison of heat sink using FEM in the natural convection)

  • 이민;이춘규
    • Design & Manufacturing
    • /
    • 제12권1호
    • /
    • pp.31-35
    • /
    • 2018
  • The peltier thermoelectric module are used to cool the heat generated by electronic equipment. In order to increase the efficiency of the peltier thermoelectric module, the heat must be released to the outside. A heat sink is used to discharge such heat to the outside. in this paper, two types of heat sinks with internal tunnels were designed. And the heating and cooling performance of the heat sink with internal tunnel structure was compared and analyzed through ANSYS. The heat sink of the A type had better heat transfer than the heat sink of the B type. Which is about 70% improved.

Transient cooling operation of multistage thermoelectric cooler (TEC)

  • Park, Jiho;Jeong, Sangkwon
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제23권3호
    • /
    • pp.55-59
    • /
    • 2021
  • A thermoelectric cooler (TEC) is promising as an alternative refrigeration technology for the sake of its inherent advantages; no-moving parts and refrigerant-free in its operation. Due to the compactness, reliability and excellence in temperature stability, TECs have been widely used for small cooling devices. In recent years, thermoelectric devices have been attractive technologies that not only serve the needs of cooling and heating applications but also meet the demand for energy by recycling waste heat. In this research paper, multistage TEC is proposed as a concept of demonstrating the idea of transient cooling technology. The key idea of transient cooling is to harnesses the thermal mass installed at the interfacial level of the stages. By storing heat temporally at the thermal mass, the multistage TEC can readily reach lower temperatures than that by a steady-state operation. The multistage TEC consists of four different sizes of thermoelectric modules and they are operated with an optimized current. Once the cold-part of the uppermost stage is reached at the no-load temperature, the current is successively supplied to the lower stages with a certain time interval; 25, 50 and 75 seconds. The results show the temperatures that can be ultimately reached at the cold-side of the lowermost stage are 197, 182 and 237 K, respectively. It can be concluded that the timing or total amount of the current fed to each thermoelectric module is the key parameter to determine the no-load temperature.