• Title/Summary/Keyword: Thermoelectric figure of merit

Search Result 94, Processing Time 0.023 seconds

Facile synthesis of nanostructured n-type SiGe alloys with enhanced thermoelectric performance using rapid solidification employing melt spinning followed by spark plasma sintering

  • Vishwakarma, Avinash;Bathula, Sivaiah;Chauhan, Nagendra S.;Bhardwaj, Ruchi;Gahtori, Bhasker;Srivastava, Avanish K.;Dhar, Ajay
    • Current Applied Physics
    • /
    • v.18 no.12
    • /
    • pp.1540-1545
    • /
    • 2018
  • SiGe alloy is widely used thermoelectric materials for high temperature thermoelectric generator applications. However, its high thermoelectric performance has been thus far realized only in alloys synthesized employing mechanical alloying techniques, which are time-consuming and employ several materials processing steps. In the current study, for the first time, we report an enhanced thermoelectric figure-of-merit (ZT) ~ 1.1 at $900^{\circ}C$ in ntype $Si_{80}Ge_{20}$ nano-alloys, synthesized using a facile and up-scalable methodology consisting of rapid solidification at high optimized cooling rate ${\sim}3.4{\times}10^7K/s$, employing melt spinning followed by spark plasma sintering of the resulting nano-crystalline melt-spun ribbons. This enhancement in ZT > 20% over its bulk counterpart, owes its origin to the nano-crystalline microstructure formed at high cooling rates, which results in crystallite size ~7 nm leading to high density of grain boundaries, which scatter heat-carrying phonons. This abundant scattering resulted in a very low thermal conductivity ${\sim}2.1Wm^{-1}K^{-1}$, which corresponds to ~50% reduction over its bulk counterpart and is amongst the lowest reported thus far in n-type SiGe alloys. The synthesized samples were characterized using X-ray diffraction, scanning electron microscopy and transmission electron microscopy, based on which the enhancement in their thermoelectric performance has been discussed.

Thermoelectric Properties in the Cu Doping Effects of the n-type Bi-Te Powders (Bi-Te계 n형 열전분말의 열전특성에 미치는 Cu 도핑의 영향)

  • Park, Min Soo;Koo, Hye Young;Ha, Gook Hyun;Park, Yong Ho
    • Journal of Powder Materials
    • /
    • v.22 no.4
    • /
    • pp.254-259
    • /
    • 2015
  • $Bi_2Te_3$ related compounds show the best thermoelectric properties at room temperature. However, n-type $Bi_2Te_{2.7}Se_{0.3}$ showed no improvement on ZT values. To improve the thermolectric propterties of n-type $Bi_2Te_{2.7}Se_{0.3}$, this research has Cu-doped n-type powder. This study focused on effects of Cu-doping method on the thermoelectric properties of n-type materials, and evaluated the comparison between the Cu chemical and mechanical doping. The synthesized powder was manufactured by the spark plasma sintering(SPS). The thermoelectric properties of the sintered body were evaluated by measuring their Seebeck coefficient, electrical resistivity, thermal conductivity, and hall coefficient. An introduction of a small amount of Cu reduced the thermal conductivity and improved the electrical properties with Seebeck coefficient. The authors provided the optimal concentration of $Cu_{0.1}Bi_{1.99}Se_{0.3}Te_{2.7}$. A figure of merit (ZT) value of 1.22 was obtained for $Cu_{0.1}Bi_{1.9}Se_{0.3}Te_{2.7}$ at 373K by Cu chemical doping, which was obviously higher than those of $Cu_{0.1}Bi_{1.9}Se_{0.3}Te_{2.7}$ at 373K by Cu mechanical doping (ZT=0.56) and Cu-free $Bi_2Se_{0.3}Te_{2.7}$ (ZT=0.51).

Effect of n-type Dopants on CoSb3 Skutterudite Thermoelectrics Sintered by Spark Plasma Sintering (Spark Plasma Sintering 법으로 제조한 CoSb3 Skutterudite계 열전소재의 n형 첨가제 효과)

  • Lee, Jae-Ki;Choi, Soon-Mok;Lee, Hong-Lim;Seo, Won-Seon
    • Korean Journal of Materials Research
    • /
    • v.20 no.6
    • /
    • pp.326-330
    • /
    • 2010
  • $CoSb_3$ Skutterudites materials have high potential for thermoelectric application at mid-temperature range because of their superior thermoelectric properties via control of charge carrier density and substitution of foreign atoms. Improvement of thermoelectric properties is expected for the ternary solid solution developed by substitution of foreign atoms having different valances into the $CoSb_3$ matrix. In this study, ternary solid solutions with a stoichiometry of $Co_{1-x}Ni_xSb_3$ x = 0.01, 0.05, 0.1, 0.2, $CoSb_{3-y}Te_y$, y = 0.1, 0.2, 0.3 were prepared by the Spark Plasma Sintering (SPS) system. Before the SPS synthesis, the ingots were synthesized by vacuum induction melting and followed by annealing. For phase analysis X-ray powder diffraction patterns were checked. All the samples were confirmed as single phase; however, with samples that were more doped than the solubility limit some secondary phases were detected. All the samples doped with Ni and Te atoms showed a negative Seebeck coefficient and their electrical conductivities increased with the doping amount up to the solubility limit. For the samples prepared by SPS the maximum value for dimensionless figure of merit reached 0.26, 0.42 for $Co_{0.9}Ni_{0.1}Sb_3$, $CoSb_{2.8}Te_{0.2}$ at 690 K, respectively. These results show that the SPS method is effective in this system and Ni/Te dopants are also effective for increasing thermoelectric properties of this system.

Microstructure and Thermoelectric Properties of n-Type $\textrm{Bi}_{2}(\textrm{Te}_{0.9}\textrm{Se}_{0.1})_3$ Fabricated by Mechanical Alloying and Hot Pressing Methods (기계적 합금화 공정으로 제조한 n형 $\textrm{Bi}_{2}(\textrm{Te}_{0.9}\textrm{Se}_{0.1})_3$ 가압소결체의 미세구조와 열전특성)

  • Kim, Hui-Jeong;Choe, Jae-Sik;Hyeon, Do-Bin;O, Tae-Seong
    • Korean Journal of Materials Research
    • /
    • v.7 no.1
    • /
    • pp.40-49
    • /
    • 1997
  • $Bi_{2}(Te_{0.9}Se_{0.1})_{3}$ thermoelectric matcrials havc 11et:n fahricxted hy mechanical alloying and hot pressing methods. Microstructure and thermoelectric properties of the hot 11resseii $Bi_{2}(Te_{0.9}Se_{0.1})_{3}$ have been investigated Lvith variations of hot pressing temperature and dopmt atltiition Formation of $Bi_{2}(Te_{0.9}Se_{0.1})_{3}$ alloy powders was completed by mechanical alloying of the as-mixed Ri. Te, arid Sc grmules of ~3.6mm size for 3 hours at ball-to-material weight ratio of 5 : 1. Figure of merit of $Bi_{2}(Te_{0.9}Se_{0.1})_{3}$ was markedly incrcwieti hy hot pressing at temperatures above $450^{\circ}C$, and value of $1.9{\times}10^{-3}/K$ was obtained for the specimen hot pressed at $550^{\circ}C$. With addition of 0.015 wt% Ri as acceptor dopant, figure of merit ol $Bi_{2}(Te_{0.9}Se_{0.1})_{3}$ hot pressed $550^{\circ}C$$2.1{\times}10^{-3}/K$.

  • PDF

Thermoelectric Properties of the Hot-pressed Bi2(Te0.9Se0.1)3 with Dispersion of Tungsten Powders (텅스텐 분말을 분산시킨 Bi2(Te0.9Se0.1)3 가압소결체의 열전특성)

  • Roh, M.R.;Choi, J.Y.;Oh, T.S.
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.18 no.4
    • /
    • pp.55-61
    • /
    • 2011
  • The n-type $Bi_2(Te_{0.9}Se_{0.1})_3$ powers were fabricated by mechanical alloying, mixed with tungsten(W) powders, and hot-pressed at $550^{\circ}C$ for 30 minutes. Thermoelectric properties of the hot-pressed $Bi_2(Te_{0.9}Se_{0.1})_3$ were characterized as a function of the volume percent of tungsten-powder addition. The power factor of the hot-pressed $Bi_2(Te_{0.9}Se_{0.1})_3$ was $21.9{\times}10^{-4}$ $W/m-K^2$, and was improved to $30.5{\times}10^{-4}$ $W/m-K^2$ by dispersion of 1 vol% W powders. While the dimensionless figure-of-merit of the $Bi_2(Te_{0.9}Se_{0.1})_3$ hot-pressed without dispersion of W powders was measured as 0.52 at room temperature, it became substantially enhanced to 0.95 with addition of 1 vol% W powders.

Thermoelectric Properties of the 0.05wt% $SbI_3$-Doped n-Type $Bi_2({Te_{0.95}}{Se_{0.05}})_3$ Alloy with Variation of the Annealing Time (0.05wt% $SbI_3$를 첨가한 n형 $Bi_2({Te_{0.95}}{Se_{0.05}})_3$ 가압소결체의 열처리 시간에 따른 열전특성)

  • Lee, Sun-Kyong;Oh, Tae-Sung;Hyun, Dow-Bin
    • Korean Journal of Materials Research
    • /
    • v.10 no.4
    • /
    • pp.257-263
    • /
    • 2000
  • Thermoelectric properties of the 0.05wt% $SbI_3$-doped n-type $Bi_2(Te_{0.95}Se_{0.05})_3$ alloy, prepared by melting/grinding and hot pressing, were investigated with variation of the annealing time up to 36 hours. The electron concentration of the 0.05wt% SbI$_3$-doped n-type $Bi_2(Te_{0.95}Se_{0.05})_3$ alloy decreased with increasing the annealing time. The figure-of-merit of the 0.05wt% $SbI_3$-doped n-type $Bi_2(Te_{0.95}Se_{0.05})_3$ alloy was improved from $2.1{\times}10^{-3}/K$ to $2.35{\times}10^{-3}/K$ by annealing at $500^{\circ}C$ for 3 hours. When annealed longer than 12 hours, however, the figure-of-merit decreased substantially due to the increase of the electrical resistivity.

  • PDF

Thermoelectric Properties of the p-type (Bi0.2Sb0.8)2Te3 with Variation of the Hot-Pressing Temperature (가압소결온도에 따른 p형 (Bi0.2Sb0.8)2Te3 가압소결체의 열전특성)

  • Choi, Jung-Yeol;Oh, Tae-Sung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.18 no.4
    • /
    • pp.33-38
    • /
    • 2011
  • The p-type $(Bi_{0.2}Sb_{0.8})_2Te_3$ powers were fabricated by mechanical alloying and hot-pressed at temperatures of $350{\sim}550^{\circ}C$. Themoelectric properties of the hot-pressed $(Bi_{0.2}Sb_{0.8})_2Te_3$ were characterized as a function of the hot-pressing temperature. With increasing the hot-pressing temperature from $350^{\circ}C$ to $550^{\circ}C$, the Seebeck coefficient and the electrical resistivity decreased from 237 ${\mu}V/K$ to 210 ${\mu}V/K$ and 2.25 $m{\Omega}-cm$ to 1.34 $m{\Omega}-cm$, respectively. The power factor of the hot-pressed $(Bi_{0.2}Sb_{0.8})_2Te_3$ became larger from $24.95{\times}10^{-4}W/m-K^2$ to $32.85{\times}10^{-4}W/m-K^2$ with increasing the hot-pressing temperature from $350^{\circ}C$ to $550^{\circ}C$. Among the specimens hot-pressed at $350{\sim}550^{\circ}C$, the $(Bi_{0.2}Sb_{0.8})_2Te_3$ hot-pressed at $500^{\circ}C$ exhibited the maximum dimensionless figure-of-merit of 1.09 at $25^{\circ}C$ and 1.2 at $75^{\circ}C$.

Thermal conductivity of individual single-crystalline Bi nanowires grown by stress-induced recrystallization

  • Roh, Jong-Wook;Chen, Ren-Kun;Lee, Jun-Min;Ham, Jin-Hee;Lee, Seung-Hyn;Hochbaum, Allon;Hippalgaonkar, Kedar;Yang, Pei-Dong;Majumdar, Arun;Kim, Woo-Chul;Lee, Woo-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.04b
    • /
    • pp.23-23
    • /
    • 2009
  • It has been challenging to increase the thermoelectric figure of merit ($ZT=S^2{\sigma}T/\kappa$) of materials, which determine the efficiency of thermoelectric devices, because the three parameters Seebeck coefficient (S), electrical conductivity ($\sigma$), and thermal conductivity ($\kappa$) of bulk materials are inter-dependent. With the development of nanotechnology, ZT values of nanostructured materials are predicted to be enhanced by classical size effects and quantum confinement effects. In particular, Bi nanowires were suggested as one of ideal thermoelectric materials due to the expected quantum confinement effects for the simultaneous increase in Sand. In this work, we have investigated the thermal conductivity of individual single crystalline Bi nanowires with d = 98 nm and d = 327 nm in the temperature range 40 - 300 K using MEMS devices. The for the Bi nanowire with d = 98 nm was observed to be ~ 1.6 W/m-K at 300 K, which is much lower than that of Bi bulk (8 W/m-K at 300 K). This indicates that the thermal conductivity of the Bi suppressed due to enhanced surface boundary scattering in one-dimensional structures. Our results suggest that Bi nanowires grown by stress-induced method can be used for high-efficiency thermoelectric devices.

  • PDF

Synthesis of Bi-Sb-Te Thermoelectric Nanopowder by the Plasma Arc Discharge Process (플라즈마 아크 방전법에 의한 Bi-Sb-Te 나노 열전분말 제조)

  • Lee, Gil-Geun;Lee, Dong-Youl;Ha, Gook-Hyun
    • Journal of Powder Materials
    • /
    • v.15 no.5
    • /
    • pp.352-358
    • /
    • 2008
  • The present study focused on the synthesis of a bismuth-antimony-tellurium-based thermoelectric nanopowders using plasma arc discharge process. The chemical composition, phase structure, particle size of the synthesized powders under various synthesis conditions were analyzed using XRF, XRD and SEM. The powders as synthesized were sintered by the plasma activated sintering. The thermoelectric properties of sintered body were analyzed by measuring Seebeck coefficient, specific electric resistivity and thermal conductivity. The chemical composition of the synthesized Bi-Sb-Te-based powders approached that of the raw material with an increasing DC current of the are plasma. The synthesized Bi-Sb-Te-based powder consist of a mixed phase structure of the $Bi_{0.5}Sb_{1.5}Te_{3}$, $Bi_{2}Te_{3}$ and $Sb_{2}Te_{3}$ phases. This powder has homogeneous mixing state of two different particles in an average particle size; about 100nm and about 500nm. The figure of merit of the sintered body of the synthesized 18.75 wt.%Bi-24.68 wt.%Sb-56.57 wt.%Te nanopowder showed higher value than one of the sintered body of the mechanically milled 12.64 wt.%Bi-29.47 wt.%Sb-57.89 wt.%Te powder.

Thermoelectric Properties of Bi0.4Sb1.6Te3 Sintered Body Fabricated by Mechanical Grinding Process (기계적 밀링공정에 의해 제조된 Bi0.4Sb1.6Te3 소결체의 열전특성)

  • Lee, Gil-Geun;Shin, Sung-Chul;Kim, Woo-Yeol;Ha, Gook-Hyun
    • Journal of Powder Materials
    • /
    • v.13 no.5 s.58
    • /
    • pp.313-320
    • /
    • 2006
  • The present study is to analyze the thermoelectric properties of $Bi_{0.4}Sb_{1.6}Te_3$ thermoelectric materials fabricated by the mechanical grinding process. The $Bi_{0.4}Sb_{1.6}Te_3$ powders were prepared by the combination of mechanical milling and reduction treating methods using simply crushed pre-alloyed $Bi_{0.4}Sb_{1.6}Te_3$ powder. The mechanical milling was carried out using the tumbler-ball mill and planetary ball mill. The tumbler-ball milling had an effect on the carrier mobility rather than the carrier concentration, whereas, the latter on the carrier concentration. The specific electric resistivity and Seebeck coefficient decreased with increasing the reduction-heat-treatment time. The thermal conductivity continuously increased with increasing the reduction-heat-treatment time. The figure of merit of the $Bi_{0.4}Sb_{1.6}Te_3$ sintered body prepared by the mechanical grinding process showed higher value than one of the sintered body of the simply crushed powder.