Browse > Article
http://dx.doi.org/10.6117/kmeps.2011.18.4.033

Thermoelectric Properties of the p-type (Bi0.2Sb0.8)2Te3 with Variation of the Hot-Pressing Temperature  

Choi, Jung-Yeol (Department of Materials Science and Engineering, Hongik University)
Oh, Tae-Sung (Department of Materials Science and Engineering, Hongik University)
Publication Information
Journal of the Microelectronics and Packaging Society / v.18, no.4, 2011 , pp. 33-38 More about this Journal
Abstract
The p-type $(Bi_{0.2}Sb_{0.8})_2Te_3$ powers were fabricated by mechanical alloying and hot-pressed at temperatures of $350{\sim}550^{\circ}C$. Themoelectric properties of the hot-pressed $(Bi_{0.2}Sb_{0.8})_2Te_3$ were characterized as a function of the hot-pressing temperature. With increasing the hot-pressing temperature from $350^{\circ}C$ to $550^{\circ}C$, the Seebeck coefficient and the electrical resistivity decreased from 237 ${\mu}V/K$ to 210 ${\mu}V/K$ and 2.25 $m{\Omega}-cm$ to 1.34 $m{\Omega}-cm$, respectively. The power factor of the hot-pressed $(Bi_{0.2}Sb_{0.8})_2Te_3$ became larger from $24.95{\times}10^{-4}W/m-K^2$ to $32.85{\times}10^{-4}W/m-K^2$ with increasing the hot-pressing temperature from $350^{\circ}C$ to $550^{\circ}C$. Among the specimens hot-pressed at $350{\sim}550^{\circ}C$, the $(Bi_{0.2}Sb_{0.8})_2Te_3$ hot-pressed at $500^{\circ}C$ exhibited the maximum dimensionless figure-of-merit of 1.09 at $25^{\circ}C$ and 1.2 at $75^{\circ}C$.
Keywords
Thermoelectric properties; Thermoelectric materials; Hot-pressing; Bismuth antimony telluride; Figure of merit;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 D. H. Park, M. Y. Kim and T. S. Oh, "Thermoelectric Energyconversion Characteristics of the n-type Bi2$(Te,Se)^3$ Nanocomposites Processed with Carbon Nanotube Dispersion", Current Appl. Phys. 11, S41 (2011).   DOI   ScienceOn
2 D. H. Park, M. R. Roh, M. Y. Kim and T. S. Oh, "Thermoelectric Properties of the n-type $Bi_2(Te,Se)_3$ Processed by Hot Pressing", J. Microelectron. Packag. Soc., 17(2), 49 (2010).
3 Y. H. Yeo, M. Y. Kim and T. S. Oh, "Thermoelectric Characteristics of the p-type $(Bi,Sb)_2Te_3$ Nano-bulk Hot-pressed with Addition of $ZrO_2$ as Nano Inclusions", J. Microelectron. Packag. Soc., 17(3), 51 (2010).
4 M. S. Dresselhaus, G. Chen, M. Y. Tang, R. Yang, H. Lee, D. Wang, Z. Ren, J. -P. Fleurial and P. Gogna, "New Directions for Low-dimensional Thermoelectric Materials", Adv. Mater., 19, 1 (2007).
5 D. M. Rowe, "Thermoelectric Waste Heat Recovery as a Renewable Energy Source", Inter. J. Inno. Energy Sys. Power, 1(1), 13 (2006).
6 T. S. Oh, "Thermoelectric Characteristics of the p-type ($(Bi,Sb)_{2}Te_{3}/(Pb,Sn)Te$ Functional Gradient Materials with Variation of the Segment Ratio", J. Electron. Mater., 38,1041 (2009).   DOI   ScienceOn
7 B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee, X. Chen, J. Liu, M. S. Dresselhaus, G. Chen and Z. Ren, "High-thermoelectric Performance of Nanostructured Bismuth Antimony Telluride Bulk Alloys", Science, 320, 634 (2008).   DOI   ScienceOn
8 X. B. Zhao, X. H. Ji, Y. H. Zhang, T. J. Zhu, J. P. Tu and X. B. Zhang, "Bismuth Telluride Nanotubes and the Effects on the Thermoelectric Properties of Nanotube-containing Nanocomposites", Appl. Phys. Lett., 86, 62111 (2005).   DOI   ScienceOn
9 W. M. Yim and F. D. Rosi, "Compound Telluride and Their Alloys for Peltier Cooling-A Review", J. Solid State Electron., 15, 1121 (1972).   DOI   ScienceOn
10 J. Horak, K. Cermak, and L. Koudelka, "Energy Formation of Antisite Defects in Doped $Sb_{2}Te_{3}$ and $Bi_{2}Te_{3}$ Crystals", J. Phys. Chem. Solids, 47, 805 (1986).   DOI   ScienceOn
11 A. J. Minnich, M. S. Dresselhaus, Z. F. Ren and G. Chen, "Bulk Nanostructured Thermoelectric Materials: Current Research and Future Prospects", Energy Environ. Sci., 2, 466 (2009).   DOI