DOI QR코드

DOI QR Code

Thermoelectric Properties of the Hot-pressed Bi2(Te0.9Se0.1)3 with Dispersion of Tungsten Powders

텅스텐 분말을 분산시킨 Bi2(Te0.9Se0.1)3 가압소결체의 열전특성

  • Roh, M.R. (Department of Materials Science and Engineering, Hongik University) ;
  • Choi, J.Y. (Department of Materials Science and Engineering, Hongik University) ;
  • Oh, T.S. (Department of Materials Science and Engineering, Hongik University)
  • 노명래 (홍익대학교 공과대학 신소재공학과) ;
  • 최정열 (홍익대학교 공과대학 신소재공학과) ;
  • 오태성 (홍익대학교 공과대학 신소재공학과)
  • Received : 2011.12.19
  • Accepted : 2011.12.26
  • Published : 2011.12.30

Abstract

The n-type $Bi_2(Te_{0.9}Se_{0.1})_3$ powers were fabricated by mechanical alloying, mixed with tungsten(W) powders, and hot-pressed at $550^{\circ}C$ for 30 minutes. Thermoelectric properties of the hot-pressed $Bi_2(Te_{0.9}Se_{0.1})_3$ were characterized as a function of the volume percent of tungsten-powder addition. The power factor of the hot-pressed $Bi_2(Te_{0.9}Se_{0.1})_3$ was $21.9{\times}10^{-4}$ $W/m-K^2$, and was improved to $30.5{\times}10^{-4}$ $W/m-K^2$ by dispersion of 1 vol% W powders. While the dimensionless figure-of-merit of the $Bi_2(Te_{0.9}Se_{0.1})_3$ hot-pressed without dispersion of W powders was measured as 0.52 at room temperature, it became substantially enhanced to 0.95 with addition of 1 vol% W powders.

n형 $Bi_2(Te_{0.9}Se_{0.1})_3$ 분말을 기계적 합금화 공정으로 제조하고 텅스텐 분말을 분산시켜 $550^{\circ}C$에서 30분간 가압소결 후, 텅스텐 함량에 따른 열전특성을 분석하였다. 텅스텐 분말을 분산시키지 않은 $Bi_2(Te_{0.9}Se_{0.1})_3$ 가압소결체의 상온 출력인자는 $21.9{\times}10^{-4}$ $W/m-K^2$ 이었으며, 1 vol% 텅스텐 분말의 분산에 의해 상온 출력인자가 $30.5{\times}10^{-4}$ $W/m-K^2$로 증가하였다. 텅스텐 분말을 분산시키지 않은 $Bi_2(Te_{0.9}Se_{0.1})_3$ 가압소결체는 상온에서 0.52의 무차원 성능지수를 나타내었으며, 1 vol% 텅스텐 분말의 분산에 의해 무차원 성능지수가 0.95로 크게 향상되었다.

Keywords

References

  1. M. A. Ryan and J-P. Fleurial, "Where There is Heat, There is a Way: Thermal to Electric Power Conversion Using Thermoelectric Micro Converters", Electochem. Soc. Interface, 11, 30 (2002).
  2. B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee, X. Chen, J. Liu, M. S. Dresselhaus, G. Chen and Z. Ren, "High-thermoelectric Performance of Nanostructured Bismuth Antimony Telluride Bulk Alloys", Science, 320, 634 (2008). https://doi.org/10.1126/science.1156446
  3. W. Kim, J. Zide, A. Gossard, D. Klenov, S. Stemmer, A. Shakouki and A. Majumdar, "Thermal Conductivity Reduction and Thermoelectric Figure of Merit Increase by Embedded Nanoparticles in Crystalline Semiconductors", Phys. Review Lett., 96, 045901 (2006). https://doi.org/10.1103/PhysRevLett.96.045901
  4. M. Y. Kim and T. S. Oh, "Effects of Annealing in Reduction Ambient on Thermoelectric Properties of the (Bi,Sb)2Te3 Thin Films Processed by Vacuum Evaporation", J. Microelectron. Packag. Soc., 15(3), 1 (2008).
  5. Y. H. Yeo, M. Y. Kim and T. S. Oh, "Thermoelectric Characteristics of the p-type $(Bi,Sb)_{2}Te_{3}$ Nano-bulk Hot-pressed with Addition of $ZrO_{2}$ as Nano Inclusions", J. Microelectron. Packag. Soc., 17(3), 51 (2010).
  6. D. H. Park, M. R. Roh, M. Y. Kim and T. S. Oh, "Thermoelectric Properties of the n-type $Bi_{2}(Te,Se)_{3}$ Processed by Hot Pressing", J. Microelectron. Packag. Soc., 17(2), 49 (2010).
  7. D. R. Rowe, CRC handbook of thermoelectrics, pp.441-458, CRC Press, Boca Raton (1995).
  8. "산업부문 에너지 효율의 국제비교와 요인분해 및 시사점", e-KIET 산업경제정보, 제 437호 (2009).
  9. 이성근, "IEA 산업부문 에너지 통계 및 효율지표 작성과 시사점", KEEI Issue Paper, 1, 1 (2007).
  10. W. M. Yim and F. D. Rosi, "Compound Telluride and Their Alloys for Peltier Cooling-a Review", J. Solid State Electron., 15, 1121 (1972). https://doi.org/10.1016/0038-1101(72)90172-4
  11. R. Venkatasubramanian, E. Siivola, T. Colpitts and B. O'Quinn, "Thin-film Thermoelectric Devices with High Room-temperature Figures of Merit", Nature, 413, 597 (2001). https://doi.org/10.1038/35098012
  12. M. S. Dresselhaus, G. Chen, M. Y. Tang, R. Yang, H. Lee, D. Wang, Z. Ren, J. -P. Fleurial and P. Gogna, "New Directions for Low-dimensional Thermoelectric Materials", Adv. Mater., 19, 1 (2007).
  13. X. B. Zhao, X. H. Ji, Y. H. Zhang, T. J. Zhu, J. P. Tu and X. B. Zhang, "Bismuth Telluride Nanotubes and the Effects on the Thermoelectric Properties of Nanotube-containing Nanocomposites", Appl. Phys. Lett., 86, 062111 (2005). https://doi.org/10.1063/1.1863440
  14. X. B. Zhao, S. H. Yang, Y. Q. Cao, J. L. Mi, Q. Zhang and T. J. Zhu, "Synthesis of Nanocomposites with Improved Thermoelectric Properties", J. Electron. Mater., 38, 1017 (2009). https://doi.org/10.1007/s11664-009-0698-2
  15. J. -F. Li and J. Liu, "Effect of Nano-SiC Dispersion on Thermoelectric Properties of $Bi_2Te_3$ Polycrystals", Phys. Stat. Sol., 203, 3768 (2006). https://doi.org/10.1002/pssa.200622011
  16. H. L. Ni, X. B. Zhao, T. J. Zhu, X. H. Ji and J. P. Tu, "Synthesis and Thermoelectric Properties of $Bi_2Te_3$ Based Nanocomposites", J. Alloys & Compounds, 397, 317 (2005). https://doi.org/10.1016/j.jallcom.2005.01.046
  17. M. S. Dresselhaus, G. Dresselhaus, X. Sun, Z. Zhang, S. B. Cronin, T. Koga, J. Y. Ming and G. Chen, "The Promise of Low-dimensional Thermoelectric Materials", Microscale Thermophysical Engineering, 3, 89 (1999). https://doi.org/10.1080/108939599199774
  18. F. Li , X. Huang, Z. Sun, J. Ding, J. Jiang, W. Jiang and L. Chen, "Enhanced Thermoelectric Properties of n-type $Bi_{2}Te3$ based Nanocomposite Fabricated by Spark Plasma Sintering", J. Alloys Compd., 509, 4769 (2011). https://doi.org/10.1016/j.jallcom.2011.01.155
  19. Z. Xiong, X. H. Chen, X. Y. Zhao, S. Q. Bai, X. Y. Huang and L. D. Chen, "Effects of nano-$TiO_{2}$ Dispersion on the Thermoelectric Properties of Filled-skutterudite $Ba_{0.22}Co_{4}Sb_{12}$", Solid State Sci., 11, 1612 (2009). https://doi.org/10.1016/j.solidstatesciences.2009.06.007
  20. Z. M. He, C. Stiewe, D. Platzek, G. Karpinski, E. Muller, S. H. Li, M. Toprak and M. Muhammed, "Nano $ZrO_2/CoSb_3$ Composites with Improved Thermoelectric Figure of Merit", Nanotechnol., 18, 235 (2007).
  21. M. Y. Kim, Y. H. Yeo, D. H. Park and T. S. Oh, "Thermoelectric Energy-conversion Characteristics of n-type $Bi_2(Te,Se)_3$ Nanocomposites Processed with Carbon Nanotube Dispersion", Current Appl. Phys., 11, S41 (2011). https://doi.org/10.1016/j.cap.2011.07.007
  22. S. O. Kasap, Principles of Electronic Materials and Devices, 2nd Ed., pp.126, McGraw-Hill, Boston (2002).
  23. S. J Thiagarajan, W. Wang and R. Yang, "Nanocomposites as High Efficiency Thermoelectric Materials", in Annual Review of Nano Research (Vol. 3), G. Cao, Q. Zhang and C. J. Brinkereds, Eds., pp.440, World Scientific Publishing Co., Singapore (2009).
  24. J. S. Lee, T. S. Oh and D. B. Hyun, "Thermoelectric Properties of the Hot-pressed $(Bi_{0.2}Sb_{0.8})_2TE_3$ Alloy with Addition of BN and $WO_3$ Powders", J. Mater. Sci., 35, 881 (2000). https://doi.org/10.1023/A:1004790106241
  25. J. Yang, R. Chen, X. Fan, S. Bao and W. Zhu, "Thermoelectric Properties of Silver-doped n-type $Bi_{2}Te_{3}$-based Material Prepared by Mechanical Alloying and Subsequent Hot Pressing", J. Alloys Compd., 407, 330 (2006). https://doi.org/10.1016/j.jallcom.2005.06.041
  26. L. D. Zhao, B. P. Zhang, J. F. Li, M. Zhou, W. S. Liu and J. Li, "Thermoelectric and Mechanical Properties of Nano- SiC-dispersed $Bi_2Te_3$ Fabricated by Mechanical Alloying and Spark Plasma Sintering", J. Alloys Compd., 455, 259 (2008). https://doi.org/10.1016/j.jallcom.2007.01.015
  27. D. W. Liu, J. F. Li, C. Chen and B. P. Zhang, "Effects of SiC Nanodispersion on the Thermoelectric Properties of p-type and n-type $Bi_2Te_3-based $ Alloys", J. Electron. Mater., 40, 992 (2011). https://doi.org/10.1007/s11664-010-1476-x