Browse > Article
http://dx.doi.org/10.4150/KPMI.2015.22.4.254

Thermoelectric Properties in the Cu Doping Effects of the n-type Bi-Te Powders  

Park, Min Soo (Korea Institute of Materials Science)
Koo, Hye Young (Korea Institute of Materials Science)
Ha, Gook Hyun (Korea Institute of Materials Science)
Park, Yong Ho (Department of Material Engineering, Pusan National University)
Publication Information
Journal of Powder Materials / v.22, no.4, 2015 , pp. 254-259 More about this Journal
Abstract
$Bi_2Te_3$ related compounds show the best thermoelectric properties at room temperature. However, n-type $Bi_2Te_{2.7}Se_{0.3}$ showed no improvement on ZT values. To improve the thermolectric propterties of n-type $Bi_2Te_{2.7}Se_{0.3}$, this research has Cu-doped n-type powder. This study focused on effects of Cu-doping method on the thermoelectric properties of n-type materials, and evaluated the comparison between the Cu chemical and mechanical doping. The synthesized powder was manufactured by the spark plasma sintering(SPS). The thermoelectric properties of the sintered body were evaluated by measuring their Seebeck coefficient, electrical resistivity, thermal conductivity, and hall coefficient. An introduction of a small amount of Cu reduced the thermal conductivity and improved the electrical properties with Seebeck coefficient. The authors provided the optimal concentration of $Cu_{0.1}Bi_{1.99}Se_{0.3}Te_{2.7}$. A figure of merit (ZT) value of 1.22 was obtained for $Cu_{0.1}Bi_{1.9}Se_{0.3}Te_{2.7}$ at 373K by Cu chemical doping, which was obviously higher than those of $Cu_{0.1}Bi_{1.9}Se_{0.3}Te_{2.7}$ at 373K by Cu mechanical doping (ZT=0.56) and Cu-free $Bi_2Se_{0.3}Te_{2.7}$ (ZT=0.51).
Keywords
Bismuth Telluride; Thermoelectric Materials; n-type;
Citations & Related Records
연도 인용수 순위
  • Reference
1 A. Majumdar: J. Mater. Sci., 303 (2004) 777.
2 C. B. Vining: Nat. Mater., 413 (2001) 577.
3 B. C. Sales: J. Mater. Sci., 295 (2002) 1248.
4 D. M. Rowe: CRC Handbook of Thermoelectrics, CRC Press, Inc., NewYork (1995) 211.
5 D. M. Rowe: CRC Handbook of Thermoelectrics: macro to nano, CRC Press, Inc., NewYork (2006) 15.
6 H. J. Goldsmid: Thermoelectric refrigeration, Plenum press, New York (1964) 74.
7 R. G. Copeand and A. W. Penn: J. Mater. Sci., 3 (1968) 103.
8 J. R. Weise and L. Muldawer: J. Phys. Chem., 15 (1960) 13.
9 H. Scherrer, R. Martin-Lpez, B. Lenoir, A. Dauscher and St. Scherrer: 20th interational conference on thermoelectrics (2001).
10 P. Pierrat: J. Mater. Sci., 32 (1997) 3653.   DOI
11 Jun Jiang, Lidong Chen, Shengqizng Bai and Qin Yao: J. Alloys. Compd., 390 (2005) 208.   DOI   ScienceOn
12 B. Poudel: J. Mater. Sci., 320 (2008) 634.
13 T. J. Seebeck: Magenetic polarization of metals and minerals, Abhandlungen der Deutschen Akademie der Wissenschaften, Berlin, (1822).
14 D. H. Park, M. R. Roh, M. Y. Kim and T. S. Oh: J. Microelectron. Packag. Soc., 17 (2010) 49 (Korean).