• Title/Summary/Keyword: Thermoelectric energy harvesting

Search Result 52, Processing Time 0.023 seconds

Operation Analysis of Resonant DC/DC Converter able to Harvest Thermoelectric Energy (열전에너지 수확이 가능한 공진형 DC/DC 컨버터의 동작 해석)

  • Kim, Hyeok-Jin;Chung, Gyo-Bum;Cho, Kwan-Youl;Choi, Jae-Ho
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.15 no.2
    • /
    • pp.150-158
    • /
    • 2010
  • The operational characteristics of a resonant DC/DC converter, which can harvest thermoelectric energy, is analyzed, depending on the relative magnitudes of the input voltage and the load voltage. The resonant converter consists of LC resonant circuit connected to DC input source and a resonant pulse converter in which the input energy is transferred to the load as the resonant capacitor voltage is peak. The resonant capacitor doubles the input voltage by the resonance phenomenon. By the relative magnitude between the input voltage and the output voltage, the resonant DC/DC converter operates in three different modes. For boost mode, the peak voltage of the resonant capacitor is smaller than the load voltage. For hybrid mode, the peak voltage of the resonant capacitor is bigger than the load voltage and every switching period has both the boost mode and the direct mode. For the direct mode, the input voltage is bigger than the load voltage and the converter transfers directly the input energy to the load without the switching operation. Operation principles and the feasibility of the converter for the thermoelectric energy harvesting are verified with PSPICE simulation and experiment.

Low-Power Operation Method of Thermal-Energy Harvesting Sensor Circuit (Thermal Energy Harvesting용 센서회로의 저전력 구동 방법)

  • Nam, Hyun Kyung;Pham, Van Khoa;Tran, Bao Son;Nguyen, Van Tien;Min, Kyeong-Sik
    • Journal of IKEEE
    • /
    • v.22 no.3
    • /
    • pp.842-845
    • /
    • 2018
  • In this paper, we propose low-power operational methods for thermal-energy-harvesting sensor circuits. Here, the amount of harvested current has been measured as low as 8uA. However the DC power consumption of the sensor circuit is known to consume much larger than 8uA. Thus, We propose the hardware-based power gating and software-based active/sleep timing control schemes, respectively, for controlling the power consumption of sensor circuit. In the hardware-based power gating scheme, if the ratio of Toff/Ton is larger than 22, the sensor can consume less than 8uA. For the software-based active/sleep control scheme, if the ratio of Tslp/Tact is larger than 3, we can suppress the current consumption below 8uA. The hardware-based and software-based schemes proposed in this paper would be helpful in various applications of energy-harvesting sensor circuits, where the power consumption is limited by an amount of harvested energy.

Stretchable Characteristics and Power Generation Properties of a Stretchable Thermoelectric Module Filled with PDMS (PDMS로 충진된 신축열전모듈의 신축특성과 발전특성)

  • Han, Kee Sun;Oh, Tae Sung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.26 no.4
    • /
    • pp.149-156
    • /
    • 2019
  • A stretchable thermoelectric module consisting of 5 pairs of Bi2Te3-based hot-pressed p-n thermoelectric legs was processed by filling the module inside with polydimethylsiloxane (PDMS) and removing the top and bottom substrates. Its stretchable characteristics and power generation properties were measured. The integrity of the module was kept well even after 10 strain cycles ranging from 0 to 0.1. With increasing the tensile strain to 0.2, the module circuitry became open because of joint failure between Cu electrodes and thermoelectric legs. The stretchable thermoelectric module exhibited an open circuit voltage of 4.6 mV with a temperature difference of 2.2K across both ends of thermoelectric legs, and changes in its open circuit voltage were below 5% for tensile strains of 0~0.1. Being elongated for a strain of 0.1, it exhibited the maximum output power of 18.5 ㎼ with the temperature difference of 2.2K across its both ends.

Fabrication of Thermoelectric Module and Analysis of its Power Generation Characteristics (열전발전소자 제작 및 발전특성 분석)

  • Choi, Taeho;Kim, Tae Young
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.2
    • /
    • pp.90-97
    • /
    • 2021
  • In this study, a Bi2Te3 thermoelectric generator (TEG) was fabricated to convert unused thermal energy into useful electrical energy. For the performance test, a dedicated experiment device consisting of a heating block operating with cartridge heaters and a cooling block through which a refrigerant flows was constructed. A 3×3 array of thermocouples was mounted on the heating block and the cooling block, respectively, to derive the temperature fields and heat transfer rate onto both sides of the TEG. Experiments were conducted for a total of 9 temperature differences, obtaining V-I and P-R curves. The results of 7 variables including Seebeck coefficients that have a major effect on performance were presented as a function of the temperature difference. The feasibility of the energy recovery performance of the developed TEG was verified from the maximum power output of 7.5W and conversion efficiency of 11.3%.

An Auto-Switching Dual-Input Energy Harvesting Circuit (자동 스위칭 기능을 갖는 이중입력 에너지 하베스팅 회로)

  • Park, Yeon-kyoung;Kim, Mi-rae;Lee, Seung-hee;Yang, Min-Jae;Yoon, Eun-jung;Yu, Chong-gun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.10a
    • /
    • pp.577-580
    • /
    • 2014
  • In this paper an auto-switching dual-input energy harvesting circuit is proposed. Since the maximum power points of a thermoelectric generator(TEG) output and a vibration device(PEG) output is 1/2 of their open-circuit voltage, an identical MPPT controller can be used for both energy sources. The proposed circuit monitors the outputs of the TEG and PEG, and chooses the energy source generating a higher output using an auto-switching controller, and then harvests the maximum power from the selected device using a MPPT controller. The harvested energy is boosted through a charge pump and stored in a storage capacitor. The stored energy is provided to a load through a PMU(Power Management Unit). The proposed circuit is designed in a $0.35{\mu}m$ CMOS process and its functionality has been verified through extensive simulations. The designed chip occupies $1.4mm{\times}1.2mm$ including pads.

  • PDF

Thermoelectric Seebeck and Peltier effects of single walled carbon nanotube quantum dot nanodevice

  • El-Demsisy, H.A.;Asham, M.D.;Louis, D.S.;Phillips, A.H.
    • Carbon letters
    • /
    • v.21
    • /
    • pp.8-15
    • /
    • 2017
  • The thermoelectric Seebeck and Peltier effects of a single walled carbon nanotube (SWCNT) quantum dot nanodevice are investigated, taking into consideration a certain value of applied tensile strain and induced ac-field with frequency in the terahertz (THz) range. This device is modeled as a SWCNT quantum dot connected to metallic leads. These two metallic leads operate as a source and a drain. In this three-terminal device, the conducting substance is the gate electrode. Another metallic gate is used to govern the electrostatics and the switching of the carbon nanotube channel. The substances at the carbon nanotube quantum dot/metal contact are controlled by the back gate. Results show that both the Seebeck and Peltier coefficients have random oscillation as a function of gate voltage in the Coulomb blockade regime for all types of SWCNT quantum dots. Also, the values of both the Seebeck and Peltier coefficients are enhanced, mainly due to the induced tensile strain. Results show that the three types of SWCNT quantum dot are good thermoelectric nanodevices for energy harvesting (Seebeck effect) and good coolers for nanoelectronic devices (Peltier effect).

Power Generation Properties and Bending Characteristics of a Flexible Thermoelectric Module Fabricated using PDMS Filling Method (PDMS 충진법을 이용하여 형성한 유연열전모듈의 발전특성과 굽힘특성)

  • Han, Kee Sun;Oh, Tae Sung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.26 no.4
    • /
    • pp.119-126
    • /
    • 2019
  • A flexible thermoelectric module, which consisted of 18 pairs of Bi2Te3-based hot-pressed p-n thermoelectric legs, were processed by filling the module inside with polydimethylsiloxane (PDMS) and removing the top and bottom substrates. Its power generation properties and bending characteristics were measured. With putting the flexible module on the wrist, an open circuit voltage of 2.23 mV and a maximum output power of 1.69 ㎼ were generated during staying still. On the other hand, an open circuit voltage of 3.32 mV and a maximum output power of 3.41 ㎼ were obtained with walking motion. The resistance variation of the module was kept below 1% even after applying 30,000 bending cycles with a bending curvature radius of 25 mm.

Study of Reduction of Mismatch Loss of a Thermoelectric Generator (열전발전 시스템의 부정합손실 저감방안 연구)

  • Choi, Taeho;Kim, Tae Young
    • Journal of Convergence for Information Technology
    • /
    • v.12 no.3
    • /
    • pp.294-301
    • /
    • 2022
  • In this study, a multi-layer cascade (MLC) electrical array configuration method for thermoelectric generator consisting of plural number of thermoelectric modules (TEMs) was proposed to reduce mismatch loss caused by temperature maldistribution on the surfaces of the TEMs. To validate the effect of MLC on the mismatch loss reduction, a numerical model capable of reflecting multi-physics phenomena occuring in the TEMs was developed. MLC can be employed by placing a group of TEMs experiencing relatively low temperature differences in an electric layer with more electrical branches while locating a group of TEMs experiencing relatively high temperature differences in an electric layer with less electrical branches. The TEMs were classified using the temperature distribution obtained by the numerical model. A MLC with an optimal electrical branch ratio showed a 96.5% of electric power generation compared to an ideal case.

Evaluation of a betavoltaic energy converter supporting scalable modular structure

  • Kang, Taewook;Kim, Jinjoo;Park, Seongmo;Son, Kwangjae;Park, Kyunghwan;Lee, Jaejin;Kang, Sungweon;Choi, Byoung-Gun
    • ETRI Journal
    • /
    • v.41 no.2
    • /
    • pp.254-261
    • /
    • 2019
  • Distinct from conventional energy-harvesting (EH) technologies, such as the use of photovoltaic, piezoelectric, and thermoelectric effects, betavoltaic energy conversion can consistently generate uniform electric power, independent of environmental variations, and provide a constant output of high DC voltage, even under conditions of ultra-low-power EH. It can also dramatically reduce the energy loss incurred in the processes of voltage boosting and regulation. This study realized betavoltaic cells comprised of p-i-n junctions based on silicon carbide, fabricated through a customized semiconductor recipe, and a Ni foil plated with a Ni-63 radioisotope. The betavoltaic energy converter (BEC) includes an array of 16 parallel-connected betavoltaic cells. Experimental results demonstrate that the series and parallel connections of two BECs result in an open-circuit voltage $V_{oc}$ of 3.06 V with a short-circuit current $I_{sc}$ of 48.5 nA, and a $V_{oc}$ of 1.50 V with an $I_{sc}$ of 92.6 nA, respectively. The capacitor charging efficiency in terms of the current generated from the two series-connected BECs was measured to be approximately 90.7%.

Maximum Power Point Tracking Method Without Input side Voltage and current Sensor of DC-DC Converter for Thermoelectric Generation (열전발전을 위한 DC-DC Converter의 입력측 전압·전류 센서없는 최대전력점 추적방식)

  • Kim, Tae-Kyung;Park, Dae-Su;Oh, Sung-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.3
    • /
    • pp.569-575
    • /
    • 2020
  • Recently, research on renewable energy technologies has come into the spotlight due to rising concerns over the depletion of fossil fuels and greenhouse gas emissions. Demand for portable electronic and wearable devices is increasing, and electronic devices are becoming smaller. Energy harvesting is a technology for overcoming limitations such as battery size and usage time. In this paper, the V-I characteristic curve and internal resistance of thermal electric devices were analyzed, and MPPT control methods were compared. The Perturbation and Observation (P&O) control method is economically inefficient because two sensors are required to measure the voltage and current of a Thermoelectric Generator(TEG). Therefore, this paper proposes a new MPPT control method that tracks MPP using only one sensor for the regulation of the output voltage. The proposed MPPT control method uses the relationship between the output voltage of the load and the duty ratio. Control is done by periodically sampling the output voltage of the DC-DC converter to increase or decrease the duty ratio to find the optimal duty ratio and maintain the MPP. A DC-DC converter was designed using a cascaded boost-buck converter, which has a two-switch topology. The proposed MPPT control method was verified by simulations using PSIM, and the results show that a voltage, current, and power of V=4.2 V, I=2.5 A, and P=10.5 W were obtained at the MPP from the V-I characteristic curve of the TEG.