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Abstract
The thermoelectric Seebeck and Peltier effects of a single walled carbon nanotube (SWCNT) 
quantum dot nanodevice are investigated, taking into consideration a certain value of applied 
tensile strain and induced ac-field with frequency in the terahertz (THz) range. This device 
is modeled as a SWCNT quantum dot connected to metallic leads. These two metallic leads 
operate as a source and a drain. In this three-terminal device, the conducting substance is 
the gate electrode. Another metallic gate is used to govern the electrostatics and the switch-
ing of the carbon nanotube channel. The substances at the carbon nanotube quantum dot/ 
metal contact are controlled by the back gate. Results show that both the Seebeck and Peltier 
coefficients have random oscillation as a function of gate voltage in the Coulomb blockade 
regime for all types of SWCNT quantum dots. Also, the values of both the Seebeck and Pel-
tier coefficients are enhanced, mainly due to the induced tensile strain. Results show that the 
three types of SWCNT quantum dot are good thermoelectric nanodevices for energy harvest-
ing (Seebeck effect) and good coolers for nanoelectronic devices (Peltier effect).

Key words: armchair SWCNT, zigzag SWCNT, chiral SWCNT, Seebeck coefficient, Peltier 
coefficient

1. Introduction

The problem of waste heat recovery, e.g., from transportation vehicles and oil refineries, 
along with heat dissipation, e.g., in microelectronics, in which leakage currents in transis-
tors exponentially increase with temperature, is of considerable relevance to the fields of 
energy generation and conservation. Thermoelectric materials can be used to convert heat 
to electricity through the Seebeck effect (say, in thermocouples), or can be used for cool-
ing or refrigeration through the converse Peltier effect (say, for picnic coolers). Prevailing 
applications of thermoelectric devices are in the area of cooling, such as small and mobile 
refrigerators, temperature regulators of semiconductor lasers, and medical and scientific in-
struments; thermoelectric devices are also used for power generation [1]. Thermoelectric 
effects, including the Seebeck and Peltier effects, are the most straightforward methods of 
converting between thermal energy and electrical energy [2].

Recent achievements in the field of nanoscale systems have invigorated research activity 
in this area and renewed the quest for enhanced thermoelectric parameters, for example, 
Seebeck and Peltier coefficients [3]. Thermoelectric parameters are enhanced in structures 
with reduced dimensionality. In low dimensional systems, the density of states is reshaped 
with respect to bulk systems, in such a way that charge carriers are spread to higher energies 
[4]. This produces an increase not only of the Seebeck and Peltier coefficients but also, in 
principle, of the electrical conductivity and other thermoelectric parameters. Recently, the 
application of CNTs as a thermoelectric material has received interest for energy sensing, 
harvesting, and power generation [1,5]. The thermoelectric effect in single walled carbon 
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, where e is the electronic charge and T is the absolute tempera-
ture. The function, Lm, (for the cases m = 0, 1) is defined [1,2,13] 
in terms of the tunneling probability, with photons(E), as follows:

	 (4)
, where h is Planck’s constant, µ is the electrochemical potential, 
and  is the first derivative of the Fermi-Dirac dis-
tribution function and is given by:

	  (5) 

In which kB is Boltzmann’s constant, T is the absolute tem-
perature, E is the energy of the tunneled electrons, EF is the 
Fermi-energy, and  is the photon energy of the induced ac-
field. In eq 4, withphotons(E) is the tunneling probability [11,12] 
expressed in terms of the tunneling probability without photons 

 as follows [14-18]:

	 (6)
, where CCNT is the capacitance of the SWCNT quantum dot, 
C is the coupling capacitance between the SWCNT quantum 
dot and the leads, Vg is the gate voltage,  is the energy of 
the induced photon, and Jń is the ńth order Bessel function cor-
responding to the ńth different side bands of the nanostructure 
carbon nanotube quantum dot. It was possible to determine 
the tunneling probability without the induction of the photons, 

, using the WKB approximation method 
[18,19], as follows:

	 
(7)

, where a is the lattice constant, γo is the nearest neighbor hop-
ping integral, Eg is the strained band gap energy, L is the length 
of the SWCNT quantum dot, d is the diameter of the SWCNT, 
and Δ is the SWCNT thickness. The energy (E1) eq 7 is given by:

	  (8)

, where EF is the Fermi-energy, Vb is the barrier height at the 
interface between the SWCNT quantum dot and the leads, N is 
the number of tunneled electrons, e is the electronic charge, B is 
the applied magnetic field, and m* is the effective mass of the 
charge carrier Dirac fermion. The strained band gap energy, Eg, 
is expressed in terms of the induced strain, ε, for each type of 
SWCNT, as follows [20]:

- For the armchair SWCNT, Eg is given by:

	  (9)

nanotubes (SWCNTs) is attractive because of the high thermo-
power values measured in experiments [6,7]. It was found [8] 
that the thermo-power of SWCNTs could be modulated by 
the gate voltage. The unique electrical properties of carbon 
nanotubes continue to attract considerable interest because of 
this material’s extraordinary nature and potential applications. 
Thermoelectric power, in particular, is sensitive to the balance 
of electrons and holes and electron mobility in a material, and 
therefore should be a valuable tool to elucidate the intrinsic elec-
trical transport properties of SWCNTs [9,10]. The present au-
thors [11,12] studied the quantum transport characteristics of a 
SWCNT quantum dot nanodevice under the effect of an external 
tensile strain. Armchair, zigzag, and chiral SWCNTs have been 
considered.

The purpose of the present paper is to investigate the thermo-
electric Seebeck and Peltier effects of three types of SWCNT. 
Tuning the band gap of these three SWCNTs by tensile strain is 
taken into consideration.

2. The Model

A carbon nanotube field effect transistor (CNTFET) can be 
modeled as follows (Fig. 1): a SWCNT in the form of quantum 
dots is connected to two metallic leads. These two metallic leads 
operate as a source and a drain. In this three terminal device, 
the conducting substance is the gate electrode. Another metallic 
gate is used to govern the electrostatics and the switching of the 
carbon nanotube channel. The substances at the carbon nanotube 
quantum dot/ metal contact are controlled by the back gate.

The Dirac fermion electron tunneling through CNTFET is 
induced by an external applied ac-field, which is expressed as:

			    (1)

, where Vac is the amplitude of the ac-field and ω is the field 
frequency. The thermo-power (Seebeck coefficient), S, and the 
Peltier coefficient (Π) are expressed in terms of the function Lm 

(µ), as follows [2,13,14]:

	 (2)

	 (3)

Fig. 1. Schematic diagram of the suggested model.
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The chiral vector (Ch) is expressed in terms of the chiral indi-
ces n and m as [21-23]:

	  (14)

In the present paper we consider an armchair SWCNT, a 
zigzag SWCNT, and a chiral SWCNT; that is, for the armchair 
carbon nanotube n = m, while for zigzag carbon nanotube m = 0 
[21-23], and for the chiral carbon nanotube with chiral indices 
n and m [24,25].

3. Results and Discussion

Numerical calculations are performed to determine the See-
beck coefficient, S, (eq 2) and the Peltier coefficient, Π, (eq 3) 
for the armchair SWCNT, the zigzag SWCNT, and the chiral 
SWCNT quantum dots nanodevices. The computations are per-
formed for a specific value of strained energy gap (Eg) corre-
sponding to the axial tensile strain (ε) which is approximately 

-For the zigzag SWCNT, Eg is given by:

	 (10)

- For the chiral SWCNT, Eg is given by:

               (11)

, where b is the linear change in the transfer integral with a 
change in the bond length due to axial tensile strain, R is the 
radius of the carbon nanotube, θ is the chiral angle, and Ch is the 
chiral vector. The diameter (d) of the SWCNT, and the chiral 
angle (θ) are determined in terms of the chiral indices n and m 
[21-23] using the following equations:

	  (12)

	  (13)

Table 1. Values of energy gaps of all single walled carbon nanotubes corresponding to ε = 0.1

Armchair Zigzag Chiral

(5,5) (7,7) (10,10) (6,0) (7,0) (9,0) (6,2) (6,3) (8,3)

Energy gap (eV) 0.7456 0.9238 0.8766 0.8248 0.6304 0.546 0.4347

Axial tensile strain ε = 0.1.

Fig. 2. Variation of the Seebeck coefficient (S) with the gate voltage (Vg) for armchair single walled carbon nanotube.
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Fig. 3. Variation of Peltier coefficient (Π) with the gate voltage (Vg) for armchair single walled carbon nanotube.

Fig. 4. Variation of the Seebeck coefficient (S) with the gate voltage (Vg) for zigzag single walled carbon nanotube. 
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Fig. 5. Variation of Peltier coefficient (Π) with the gate voltage (Vg) for zigzag single walled carbon nanotube. 

Fig. 6. Variation of the Seebeck coefficient (S) with the gate voltage (Vg) for chiral single walled carbon nanotube. 
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and the Peltier coefficient. Fig. 6 shows the variation of Seebeck 
coefficient (S) with the gate voltage (Vg) for chiral SWCNTs of 
different chiral indices, n and m. Fig. 7 shows the variation of 
the Peltier coefficient (Π) with the gate voltage (Vg) for chiral 
SWCNTs of different chiral indices, n and m.

Oscillatory behavior of both the Seebeck coefficient (S) and 
the Peltier coefficient (Π) is observed with the dependence on 
the gate voltage (Vg) (Figs. 6 and 7). These oscillations of the 
investigated thermoelectric parameters S and Π start from ap-
proximately Vg  0.85 V and continue to higher values of the 
gate voltage. On the other hand, for small values of the gate volt-
age, that is, in the range 0 V to approximately 0.85 V, we notice 
that there are slight variations of both the Seebeck coefficient 
and the Peltier coefficient.

The present results for both the Seebeck and the Peltier co-
efficients show that the induced far-infrared radiation intro-
duces new photon-mediated conduction channels in the devices 
[16,17,26,27]. The induced ac-field enhances the energy gap, 
and the density of states exhibits photon absorption and emis-
sion. The random oscillatory behavior of both the Seebeck and 
the Peltier coefficients results from the quantum nature of the 
SWCNTs with different chiral indices (armchair, zigzag, and 
chiral SWCNTs). Also, as shown in the Figs. 2-7 the general 
trend of the variation of both the Seebeck and Peltier coefficients 
with the gate voltage for all armchair, zigzag, and chiral SW-
CNTs is approximately the same. So, this trend can be explained 
as follows: The Seebeck coefficient and the Peltier coefficient 
of the three pairs from a range 0 to 0.7 V of the gate voltage are 

equal to 0.1 (eqs 9-11) for all types of SWCNT and under an 
induced ac-field with a frequency in the mid-infrared range, that 
is, in the terahertz (THz) range. The Table 1 shows the values 
of the energy gaps for all types of SWCNT corresponding to a 
strain equal to 0.1. The features of the results are: Fig. 2 shows 
the variation of the Seebeck coefficient (S) with the gate voltage 
(Vg) for armchair SWCNTs of different chiral indices; Fig. 3 
shows the variation of the Peltier coefficient (Π) with the gate 
voltage (Vg) for armchair SWCNTs of different chiral indices.

We notice in the Figs. 2 and 3 that the variations of both the 
Seebeck coefficient (S) and the Peltier coefficient (Π) oscillate 
with the dependence on the gate voltage (Vg) in a range of gate 
voltage from 0.9 V to 2.0 V. On the other hand, for small values 
of the gate voltage, that is, in the range 0 to approximately 0.84 
V, we notice that there are slight variations of both the Seebeck 
coefficient and the Peltier coefficient. Fig. 4 shows the variation 
of Seebeck coefficient (S) with the gate voltage (Vg) for zigzag 
SWCNT of different values of chiral index (n) and Fig. 5 shows 
the variation of the Peltier coefficient (Π) with the gate voltage 
(Vg) for zigzag SWCNTs of different values of chiral index (n).

Oscillatory behavior of both the Seebeck coefficient (S) and 
the Peltier coefficient (Π) is observed with the dependence on 
the gate voltage (Vg) (Figs. 4 and 5). These oscillations of the 
investigated thermoelectric parameters S and Π start from ap-
proximately Vg  0.83 V, and continue for higher values of the 
gate voltage. On the other hand, for small values of the gate volt-
age, that is, in the range 0 V to approximately 0.83 V, we notice 
that there are slight variations of both the Seebeck coefficient 

Fig. 7. Variation of Peltier coefficient (Π) with the gate voltage (Vg) for chiral single walled carbon nanotube. 
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ficients (eqs 2 and 3) are large, as predicted from the present 
results. This study can be important in studying flexible thermo-
electric materials and thermal interface materials. The impor-
tance of both Seebeck and Peltier effects stems from the role 
of these effects in a variety of applications, from thermoelectric 
energy generation to technological applications such as spot 
cooling of integrated circuits and nanoelectronic devices. The 
results of the present research indicate that the quantum con-
fined structure of SWCNT quantum dots (three types) may be 
promising for thermoelectric applications.
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