• Title/Summary/Keyword: Thermoelectric cooling

Search Result 133, Processing Time 0.03 seconds

Computational Investigation of the Thermal Performances of Polymer Heat Sinks Passively-Cooled by Seawater for Thermoelectric Waste Heat Recovery (열전폐열회수를 위해 수동적으로 해수냉각되는 폴리머 히트싱크 열성능의 수치적 연구)

  • Kim, Kyoung Joon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.4
    • /
    • pp.432-436
    • /
    • 2015
  • This study computationally explored the thermal performance of passively-cooled polymer heat sinks utilizing seawater. Polymer heat sinks are proposed as cooling modules of the cold sides of thermoelectric generators for waste heat recovery. 3-D Computational Fluid Dynamics (CFD) modelling was conducted for a detailed numerical study. Polyphenylene sulfide (PPS) and pyrolytic graphite (PG) were selected for the base materials of polymer heat sinks. The computational study evaluated the performance of the PPS and PG heat sinks at various fin numbers and fin thicknesses. Their performances were compared with those of aluminum (Al) and titanium (Ti) heat sinks. The study results showed that the thermal performance of the PG heat sink was 3~4 times better than that of the Ti heat sink. This might be due mainly to the better heat spreading of the PG heat sink than the Ti heat sink. The effect of the number of fins on the performance of the PG heat sink was dissimilar to the cases of the PPS and Ti heat sinks. This result can be explained by the interrelationships among heat spreading, surface area enhancement, and fluidic resistance incorporating with an increase in the number of fins.

Study on the PV Driven Dehumidifying System with Oyster Shell and Thermoelectric Device (굴패각과 열전소자를 이용한 태양광 구동형 제습시스템에 관한 연구)

  • Kim, Myoung-Jun;Chea, Gyu-Hoon
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.18 no.3
    • /
    • pp.287-293
    • /
    • 2012
  • This paper has dealt with the probability of oyster shell desiccant cooling system driven by renewable energy of photo-voltaic effect. For this, fundamental experiments have been carried out focusing on the observation of dehumidifying effect of oyster shell and peltier elements used for air conditioning system. From this study, it is found that oyster shell has sufficient probability for using as a desiccant in air-conditioning system. Moreover, the heat releasing device(peltier element) can be used with direct current from PV cells so the system can be operated with high efficiency. As a result, the absolute humidity in a test chamber was reasonably controlled by oyster shell and peltier elements. Also the photo-voltaic energy from sun was enough for running power of this system.

Measurement of Peltier Heat at the Solid/Liquid Interface and Its Application to Crystal Growth II : Measurement and Application (고/액 계면에서의 Peltier 열 측정 및 결정성장에의 응용 II : 측정과 응용)

  • Kim, Il-Ho;Jang, Kyung-Wook;Lee, Dong-Hi
    • Korean Journal of Materials Research
    • /
    • v.9 no.11
    • /
    • pp.1112-1116
    • /
    • 1999
  • Thermoelectric effects on the temperature changes at the solid- and liquid-phase and its interface were studied by using the unidirectional solidification of $\textrm{Bi}_{2}\textrm{Te}_{3}$. Cooling or heating effects measured with current density. polarity and current passing time were quite different. By separating sole Peltier, Thomson and Joule heat theoretically and experimentally, the Peltier coefficient at the solid/liquid interface of $\textrm{Bi}_{2}\textrm{Te}_{3}$ was -1.10$\times\textrm{10}^{-1}$V, and the Thomson coefficients of solid- and liquid-phase were 7.31\times\textrm{10}^{-4}V/K, 5.77\times\textrm{10}^{-5}V/K, respectively. When D.C. passed from solid-phase to liquid-phase during the crystal growth of $\textrm{Bi}_{2}\textrm{Te}_{3}$ the crystal with more directionality was obtained owing to increase of the temperature gradient in liquid by the Peltier cooling. But in reverse current direction, the crystallinity was not changed significantly.

  • PDF

Thermal-hydraulic analysis of a new conceptual heat pipe cooled small nuclear reactor system

  • Wang, Chenglong;Sun, Hao;Tang, Simiao;Tian, Wenxi;Qiu, Suizheng;Su, Guanghui
    • Nuclear Engineering and Technology
    • /
    • v.52 no.1
    • /
    • pp.19-26
    • /
    • 2020
  • Small nuclear reactor features higher power capacity, longer operation life than conventional power sources. It could be an ideal alternative of existing power source applied for special equipment for terrestrial or underwater missions. In this paper, a 25kWe heat pipe cooled reactor power source applied for multiple use is preliminary designed. Based on the design, a thermal-hydraulic analysis code for heat pipe cooled reactor is developed to analyze steady and transient performance of the designed nuclear reactor. For reactor design, UN fuel with 65% enrichment and potassium heat pipes are adopted in the reactor core. Tungsten and LiH are adopted as radiation shield on both sides of the reactor core. The reactor is controlled by 6 control drums with B4C neutron absorbers. Thermoelectric generator (TEG) converts fission heat into electricity. Cooling water removes waste heat out of the reactor. The thermal-hydraulic characteristics of heat pipes are simulated using thermal resistance network method. Thermal parameters of steady and transient conditions, such as the temperature distribution of every key components are obtained. Then the postulated reactor accidents for heat pipe cooled reactor, including power variation, single heat pipe failure and cooling channel blockage, are analyzed and evaluated. Results show that all the designed parameters satisfy the safety requirements. This work could provide reference to the design and application of the heat pipe cooled nuclear power source.

Development of Fast-Response Portable NDIR Analyzer Using Semiconductor Devices

  • Kim, Woo-Seok;Lee, Jong-Hwa;Park, Young-Moo;Yoo, Jai-Suk;Park, Kyoung-Seok
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.12
    • /
    • pp.2099-2106
    • /
    • 2003
  • In this paper, a novel fast response NDIR analyzer (FRNDIR), which uses an electrically pulsed semiconductor emitter and dual type PbSe detector for the PPM-level detection of carbon dioxide (CO$_2$) at a wavelength of 4.28 $\mu\textrm{m}$, is described. Modulation of conventional NDIR energy typically occurs at 1 to 20 Hz. To achieve real time high-speed measurement, the new analyzer employs a semiconductor light emitter that can be modulated by electrical chopping. Updated measurements are obtained every one millisecond. The detector has two independent lead selenide (PbSe) with IR band pass filters. Both the emitter accuracy and the detector sensitivity are increased by thermoelectric cooling of up to -20 degrees C in all semiconductor devices. Here we report the use of semiconductor devices to achieve improved performance such that these devices have potential application to CO$_2$ gas measurement and, in particular, the measurement of fast response CO$_2$ concentration at millisecond level.

A study on control unit and system for nanoimprint equipment of the optimum conditions. (나노 임프린트 장비 최적 환경을 위한 제어 장비 및 시스템에 관한 연구)

  • Park, Gyeong-Seo;Kim, Woo-Song;Yim, Hong-Jae;Jang, Si-Yeol;Lee, Kee-Sung;Jeong, Jay-Il;Lim, Si-Hyeong;Shin, Dong-Hoon
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2375-2380
    • /
    • 2008
  • Controlling of thermal environment and flow in nanoimprint process chamber is important to ensure high precision levels of products. The purpose of this paper is to build optimal nanoimprint process environment. Because of this, Optimum PI control parameter for precise temperature control has been examined. Also porous medium of ventilation system is simulated for uniform flow in the equipment chamber. The porous medium consists of mesh structure, and is installed to place which flow the influx of the air flows. PID control parameter is based on the data obtained by experiment. And then heating and cooling method which simultaneously operated was used for decreasing an error. In conclude temperature in the equipment chamber was able to control precisely in the range of ${\pm}0.1^{\circ}C$ by the PID control parameter and Deadband.

  • PDF

Recent Progress in Air Conditioning and Refrigeration Research - A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2004 and 2005 - (공기조화, 냉동 분야의 최근 연구 동향 -2004년 및 2005년 학회지 논문에 대한 종합적 고찰-)

  • Choi, Yong-Don;Kang, Yong-Tae;Kim, Nae-Hyun;Kim, Man-Hoe;Park, Kyoung-Kuhn;Park, Byung-Yoon;Park, Jin-Chul;Hong, Hi-Ki
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.1
    • /
    • pp.94-131
    • /
    • 2007
  • A review on the papers published in the Korean Journal of Air-Conditioning and Refrigerating Engineering in 2004 and 2005 has been done. Focus has been put on current status of research in the aspect of heating, cooling, air-conditioning, ventilation, sanitation and building environment. The conclusions are as follows. (1) Most of fundamental studies on fluid flow were related with heat transportation of facilities. Drop formation and rivulet flow on solid surfaces were interesting topics related with condensation augmentation. Research on micro environment considering flow, heat, humidity was also interesting for comfortable living environment. It can be extended considering biological aspects. Development of fans and blowers of high performance and low noise were continuing topics. Well developed CFD and flow visualization(PIV, PTV and LDV methods) technologies were widely applied for developing facilities and their systems. (2) The research trends of the previous two yews are surveyed as groups of natural convection, forced convection, electronic cooling, heat transfer enhancement, frosting and defrosting, thermal properties, etc. New research topics introduced include natural convection heat transfer enhancement using nanofluid, supercritical cooling performance or oil miscibility of $CO_2$, enthalpy heat exchanger for heat recovery, heat transfer enhancement in a plate heat exchanger using fluid resonance. (3) The literature for the last two years($2004{\sim}2005$) is reviewed in the areas of heat pump, ice and water storage, cycle analysis and reused energy including geothermal, solar and unused energy). The research on cycle analysis and experiments for $CO_2$ was extensively carried out to replace the Ozone depleting and global warming refrigerants such as HFC and HCFC refrigerants. From the year of 2005, the Gas Engine Heat Pump(GHP) has been paid attention from the viewpoint of the gas cooling application. The heat pipe was focused on the performance improvement by the parametric analysis and the heat recovery applications. The storage systems were studied on the performance enhancement of the storage tank and cost analysis for heating and cooling applications. In the area of unused energy, the hybrid systems were extensively introduced and the life cycle cost analysis(LCCA) for the unused energy systems was also intensively carried out. (4) Recent studies of various refrigeration and air-conditioning systems have focused on the system performance and efficiency enhancement. Heat transfer characteristics during evaporation and condensation are investigated for several tube shapes and of alternative refrigerants including carbon dioxide. Efficiency of various compressors and expansion devices are also dealt with for better modeling and, in particular, performance improvement. Thermoelectric module and cooling systems are analyzed theoretically and experimentally. (5) According to the review of recent studies on ventilation systems, an appropriate ventilation systems including machenical and natural are required to satisfied the level of IAQ. Also, an recent studies on air-conditioning and absorption refrigeration systems, it has mainly focused on distribution and dehumidification of indoor air to improve the performance were carried out. (6) Based on a review of recent studies on indoor environment and building service systems, it is noticed that research issues have mainly focused on optimal thermal comfort, improvement of indoor air Quality and many innovative systems such as air-barrier type perimeter-less system with UFAC, radiant floor heating and cooling system and etc. New approaches are highlighted for improving indoor environmental condition as well as minimizing energy consumption, various activities of building control and operation strategy and energy performance analysis for economic evaluation.

Recent Progress in Air-Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2013 (설비공학 분야의 최근 연구 동향 : 2013년 학회지 논문에 대한 종합적 고찰)

  • Lee, Dae-Young;Kim, Sa Ryang;Kim, Hyun-Jung;Kim, Dong-Seon;Park, Jun-Seok;Ihm, Pyeong Chan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.12
    • /
    • pp.605-619
    • /
    • 2014
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2013. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) The research works on the thermal and fluid engineering have been reviewed as groups of fluid machinery, pipes and relative parts including orifices, dampers and ducts, fuel cells and power plants, cooling and air-conditioning, heat and mass transfer, two phase flow, and the flow around buildings and structures. Research issues dealing with home appliances, flows around buildings, nuclear power plant, and manufacturing processes are newly added in thermal and fluid engineering research area. (2) Research works on heat transfer area have been reviewed in the categories of heat transfer characteristics, pool boiling and condensing heat transfer and industrial heat exchangers. Researches on heat transfer characteristics included the results for general analytical model for desiccant wheels, the effects of water absorption on the thermal conductivity of insulation materials, thermal properties of Octadecane/xGnP shape-stabilized phase change materials and $CO_2$ and $CO_2$-Hydrate mixture, effect of ground source heat pump system, the heat flux meter location for the performance test of a refrigerator vacuum insulation panel, a parallel flow evaporator for a heat pump dryer, the condensation risk assessment of vacuum multi-layer glass and triple glass, optimization of a forced convection type PCM refrigeration module, surface temperature sensor using fluorescent nanoporous thin film. In the area of pool boiling and condensing heat transfer, researches on ammonia inside horizontal smooth small tube, R1234yf on various enhanced surfaces, HFC32/HFC152a on a plain surface, spray cooling up to critical heat flux on a low-fin enhanced surface were actively carried out. In the area of industrial heat exchangers, researches on a fin tube type adsorber, the mass-transfer kinetics of a fin-tube-type adsorption bed, fin-and-tube heat exchangers having sine wave fins and oval tubes, louvered fin heat exchanger were performed. (3) In the field of refrigeration, studies are categorized into three groups namely refrigeration cycle, refrigerant and modeling and control. In the category of refrigeration cycle, studies were focused on the enhancement or optimization of experimental or commercial systems including a R410a VRF(Various Refrigerant Flow) heat pump, a R134a 2-stage screw heat pump and a R134a double-heat source automotive air-conditioner system. In the category of refrigerant, studies were carried out for the application of alternative refrigerants or refrigeration technologies including $CO_2$ water heaters, a R1234yf automotive air-conditioner, a R436b water cooler and a thermoelectric refrigerator. In the category of modeling and control, theoretical and experimental studies were carried out to predict the performance of various thermal and control systems including the long-term energy analysis of a geo-thermal heat pump system coupled to cast-in-place energy piles, the dynamic simulation of a water heater-coupled hybrid heat pump and the numerical simulation of an integral optimum regulating controller for a system heat pump. (4) In building mechanical system research fields, twenty one studies were conducted to achieve effective design of the mechanical systems, and also to maximize the energy efficiency of buildings. The topics of the studies included heating and cooling, HVAC system, ventilation, and renewable energies in the buildings. Proposed designs, performance tests using numerical methods and experiments provide useful information and key data which can improve the energy efficiency of the buildings. (5) The field of architectural environment is mostly focused on indoor environment and building energy. The main researches of indoor environment are related to infiltration, ventilation, leak flow and airtightness performance in residential building. The subjects of building energy are worked on energy saving, operation method and optimum operation of building energy systems. The remained studies are related to the special facility such as cleanroom, internet data center and biosafety laboratory. water supply and drain system, defining standard input variables of BIM (Building Information Modeling) for facility management system, estimating capability and providing operation guidelines of subway station as shelter for refuge and evaluation of pollutant emissions from furniture-like products.

Development and Properties of Carbon monoxide Detector for Ambient Air monitoring (대기오염 측정용 일신화 탄소 검출기의 제작 및 특성)

  • Cho, Kyung-Haeng;Lee, Sang-Wha;Lee, Joung-Hae;Choi, Kyong-Sik
    • Analytical Science and Technology
    • /
    • v.13 no.2
    • /
    • pp.222-228
    • /
    • 2000
  • A detector for monitoring carbon monoxide (CO) in ambient air by nondispersive infrared (NDIR) spectroscopy has been developed and investigated its sensitivity and stability. The essential parts of the absorption cell are three spherical concave mirrors so as to improve the sensitivity by increasing the light path length in the cell. The radius and center of curvature of mirrors and position in the cell was calculated by computer simulation in order that the light path length may be 16m into the 50cm cell. The number of traversals and optical path properties were confirmed by laser beam alignment in transparent absorption cell. The photoconductive type lead selenide (PbSe) was used as CO sensing material, which was cooled to increase the responsibility by thermoelectric cooling method. The detection limit and span drift of the developed CO detector was 0.24ppm and 0.03ppm(v/v) respectively.

  • PDF

Recent Progress in Air-Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2009 (설비공학 분야의 최근 연구 동향 : 2009년 학회지 논문에 대한 종합적 고찰)

  • Han, Hwa-Taik;Lee, Dae-Young;Kim, Seo Young;Choi, Jong-Min;Baik, Yong-Kyu;Kwon, Young-Chul
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.7
    • /
    • pp.492-507
    • /
    • 2010
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2009. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) Research trends of thermal and fluid engineering have been surveyed as groups of general thermal and fluid flow, fluid machinery and piping, and new and renewable energy. Various topics were covered in the field of general thermal and fluid flow such as an expander, a capillary tube, the flow of micro-channel water blocks, the friction and anti-wear characteristics of nano oils with mixtures of refrigerant oils, etc. Research issues mainly focused on the design of micro-pumps and fans, the heat resistance reliability of axial smoke exhaust fans, and hood systems in the field of fluid machinery and piping. Studies on ground water sources were executed concerning two well type geothermal heat pumps and multi-heat pumps in the field of new and renewable energy. (2) Research works on heat transfer area have been reviewed in the categories of heat transfer characteristics and industrial heat exchangers. Researches on heat transfer characteristics included the heat transfer in thermoelectric cooling systems, refrigerants, evaporators, dryers, desiccant rotors. In the area of industrial heat exchangers, researches on high temperature ceramic heat exchangers, plate heat exchangers, frosting on fins of heat exchangers were performed. (3) In the field of refrigeration, papers were presented on alternative refrigerants, system improvements, and the utilization of various energy sources. Refrigeration systems with alternative refrigerants such as hydrocarbons, mixed refrigerants, and $CO_2$ were studied. Efforts to improve the performance of refrigeration systems were made applying various ideas of suction line heat exchangers, subcooling bypass lines and gas injection systems. Studies on heat pump systems using unutilized energy sources such as river water, underground water, and waste heat were also reported. (4) Research trend in the field of mechanical building facilities has been found to be mainly focused on field applications rather than performance improvements. In the area of cogeneration systems, papers on energy and economic analysis, LCC analysis and cost estimating were reported. Studies on ventilation and heat recovery systems introduced the effect on fire and smoke control, and energy reduction. Papers on district cooling and heating systems dealt with design capacity evaluation, application plan and field application. Also, the maintenance and management of building service equipments were presented for HVAC systems. (5) In the field of architectural environment, various studies were carried to improve indoor air quality and to analyze the heat load characteristics of buildings by energy simulation. These studies helped to understand the physics related to building load characteristics and to improve the quality of architectural environment where human beings reside in.