• Title/Summary/Keyword: Thermoelectric Probe

Search Result 15, Processing Time 0.027 seconds

High Performance Thermoelectric Scanning Thermal Microscopy Probe Fabrication (고성능 주사탐침열현미경 열전탐침 제작)

  • Kim, Donglip;Kim, Kyeongtae;Kwon, Ohmyoung;Park, Seungho;Choi, Young Ki;Lee, Joon Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.11 s.242
    • /
    • pp.1503-1508
    • /
    • 2005
  • Scanning Thermal Microscope (STU) has been known for its superior resolution for local temperature and thermal property measurement. However, commercially available STU probe which is the key component of SThM does not provide resolution enough to explore nanoscale thermal phenomena. Here, we developed a SThM probe fabrication process that can achieve spatial resolution around 50 m. The batch-fabricated probe has a thermocouple junction located at the end of the tip. The size of the thermocouple junction is around 200 m and the distance of the junction from the very end of the tip is 150 m. The probe is currently being used for nanoscale thermal probing of nano-material and nano device.

Development of Nanoscale Thermoelectric Coefficient Measurement Technique Through Heating of Nano-Contact of Probe Tip and Semiconductor Sample with AC Current (탐침의 첨단과 반도체 시편 나노접접의 교류전류 가열을 통한 나노스케일 열전계수 측정기법 개발)

  • Kim, Kyeongtae;Jang, Gun-Se;Kwon, Ohmyoung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.1 s.244
    • /
    • pp.41-47
    • /
    • 2006
  • High resolution dopant profiling in semiconductor devices has been an intense research topic because of its practical importance in semiconductor industry. Although several techniques have already been developed. it still requires very expensive tools to achieve nanometer scale resolution. In this study we demonstrated a novel dopant profiling technique with nanometer resolution using very simple setup. The newly developed technique measures the thermoelectric voltage generated in the contact point of the SPM probe tip and MOSFET surface instead of electrical signals widely adopted in previous techniques like Scanning Capacitance Microscopy. The spatial resolution of our measurement technique is limited by the size of contact size between SPM probe tip and MOSFET surface and is estimated to be about 10 nm in this experiment.

Thermoelectric Properties of $Bi_2Te_3$, $Sb_2Te_3$ by varying annealing temperature (Thermopile, 펠티어소자에 적용할 $Bi_2Te_3$, $Sb_2Te_3$의 annealing 온도변화에 따른 박막특성 분석)

  • Kim, Hyeon-Sik;Cho, Yeon-Shik;Park, Hyo-Derk;Seo, Dae-Sik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.212-212
    • /
    • 2009
  • Thermoelectric devices were used to wide range of application. At present, increasing the efficiency of these devices, in particular, through the preparation of materials showing a high thermoelectric figure of merit, Z, $Bi_2Te_3$ and $Sb_2Te_3$ thin films on Si substrates are deposited by flash evaporation method for thermopile sensor applications. In order to enhance the thermoelectric properties of the thin film, annealing in high vacuum is carried out in the temperature range from 200 to $350^{\circ}C$. The microstructure of the film is investigated by XRD and SEM. The resistivity and Seebeck coefficient of the films are measured by Van der Pauw method and hot probe method respectively. At elevating annealing temperature, the crystallinity and thermoelectrical properties of films are improved by increasing the size of grains. At excessive high annealing temperatures, it is shown that Seebeck coefficient of films is decreased because of Te evaporation. By optimizing the annealing conditions, it is possible to obtain a high performance thin film with a thermoelectric properties.

  • PDF

Thermal Design and Batch Fabrication of Full SiO2 SThM Probes for Sensitivity Improvement (주사탐침열현미경의 감도향상을 위한 전체 실리콘 산화막 열전탐침의 열적설계 및 일괄제작)

  • Jaung, Seung-Pil;Kim, Kyeong-Tae;Won, Jong-Bo;Kwon, Oh-Myoung;Park, Seung-Ho;Choi, Young-Ki;Lee, Joon-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.10
    • /
    • pp.800-809
    • /
    • 2008
  • Scanning Thermal Microscope (SThM) is the tool that can map out temperature or the thermal property distribution with the highest spatial resolution. Since the local temperature or the thermal property of samples is measured from the extremely small heat transferred through the nanoscale tip-sample contact, improving the sensitivity of SThM probe has always been the key issue. In this study, we develop a new design and fabrication process of SThM probe to improve the sensitivity. The fabrication process is optimized so that cantilevers and tips are made of thermally grown silicon dioxide, which has the lowest thermal conductivity among the materials used in MEMS. The new design allows much higher tip so that heat transfer through the air gap between the sample-probe is reduced further. The position of a reflector is located as far away as possible to minimize the thermal perturbation due to the laser. These full $SiO_2$ SThM probes have much higher sensitivity than that of previous ones.

Output Property of Ge-Thermopile Sensor (Ge계 열전센서의 출력특성)

  • Park, Su-Dong;Kim, Bong-Seo;Oh, Min-Wook
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.265-266
    • /
    • 2006
  • It was well known that thermopile was quiet a competent sensor using to probe the temperature of "hot point" where the temperature can be off the temperature-limitation for normal operation of the main electrical power equipment. In the present work, we aimed for developing new Ge-thermopile materials which can be using a non-contact temperature sensors at various hot-point of the power equipment and evaluation of its output property. As a results of the present works, a new thermopile which were composed Ga-poded p-type and Sb-doped n-type in Ge-semiconductor were designed and manufactured by MBE(Molecular Beam Epitaxy) process and showed superior sensitivity at room temperature.

  • PDF

Needle Type of Hybrid Temperature Probe for Both Diagnosis and Treatment of Musculoskeletal Pain Syndrome (근골격계 통증질환의 진단과 치료를 위한 주사바늘형 복합온도 프로브의 개발)

  • Nam, Sung-Ki;Kim, Hyung-Il;Byun, Chang-Ho;Lee, Sun-Kyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.4
    • /
    • pp.359-364
    • /
    • 2014
  • This paper describes the development of needle type probe that measures temperature and injects medicine for both diagnosis and treatment of musculoskeletal pain syndrome (MPS). The size of trigger points is from several micrometers to millimeter. Therefore, it is required to develop a medical device that is capable of not only finding the trigger points by temperature measurement, but also injecting medicine at the exact location for treatment. To challenge these difficulties, thermocouple was fabricated on the surface of a needle using metal deposition process. Special type of stainless-constantan thermocouple was achieved from the stainless body of a needle itself and deposited constantan metal film. In particular, parylene coating enables to limit the temperature sensitive area to the end of the needle tip. Fabricated needle type probe produces $3.25mV/^{\circ}C$ of thermoelectric sensitivity and compared its performance with commercial T-type thermocouple in animal muscle sample.

Fabrication of a Micro-thermoelectric Probe (마이크로 프로브 기반 열전 센서 제작 기술)

  • Chang, Won-Seok;Choi, Tae-Youl
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.11
    • /
    • pp.1133-1137
    • /
    • 2011
  • A novel technique for the fabrication of a glass micropipette-based thermal sensor was developed utilizing inexpensive thermocouple materials. Thermal fluctuation with a resolution of ${\pm}0.002$ K was measured using the fabricated thermal probe. The sensors comprise unleaded low-melting point solder alloy (Sn) as a core metal inside a borosilicate glass pipette coated with a thin film of Ni, creating a thermocouple junction at the tip. The sensor was calibrated using a thermally insulated calibration chamber, the temperature of which can be controlled with a precision of ${\pm}0.1$ K and the thermoelectric power (Seebeck coefficient) of the sensor was recorded from 8.46 to $8.86{\mu}V$/K. The sensor we have produced is both cost-effective and reliable for thermal conductivity measurements of micro-electromechanical systems (MEMS) and biological temperature sensing at the micron level.

Microstructures and Thermal Properties of Water Quenched Thermoelectric Material in Bi2Te3-PbTe System (급속 응고 된 Bi2Te3-PbTe계 열전소재의 미세구조와 열전 특성)

  • Yim, Ju-Hyuk;Jung, Kyoo-Ho;You, Hyun-Woo;Kim, Kwang-Chon;Kim, Jin-Sang
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.6
    • /
    • pp.502-507
    • /
    • 2010
  • In order to design nano structured materials with enhanced thermoelectric properties, the alloys in the pseudo-binary $Bi_2Te_3$-PbTe system are investigated for their micro structure properties. For this synthesis, the liquid alloys are cooled by the water quenching method. Micro structure images are obtained by using an electron probe micro analyzer(EPMA). Dendritic and lamellar structures are clearly observed with the variation in the composition ratio between $Bi_2Te_3$ and PbTe. The increase in the $Bi_2Te_3$ composition ratio causes to change of the structure from dendritic to lamellar. The Seebeck coefficient of sample 5, in which the mixture rate of $Bi_2Te_3$ is 83%, is measured as the highest value. In contrast, the others decrease with the increase of the $Bi_2Te_3$ composition ratio. Meanwhile, p-type characteristics are observed in sample 6, at 91%-$Bi_2Te_3$ mixture rate. The power factors of the all samples are calculated with the Seebeck coefficient and resistivity.