• Title/Summary/Keyword: Thermoelectric Generation

Search Result 110, Processing Time 0.025 seconds

Maximum Power Point Tracking Method Without Input side Voltage and current Sensor of DC-DC Converter for Thermoelectric Generation (열전발전을 위한 DC-DC Converter의 입력측 전압·전류 센서없는 최대전력점 추적방식)

  • Kim, Tae-Kyung;Park, Dae-Su;Oh, Sung-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.3
    • /
    • pp.569-575
    • /
    • 2020
  • Recently, research on renewable energy technologies has come into the spotlight due to rising concerns over the depletion of fossil fuels and greenhouse gas emissions. Demand for portable electronic and wearable devices is increasing, and electronic devices are becoming smaller. Energy harvesting is a technology for overcoming limitations such as battery size and usage time. In this paper, the V-I characteristic curve and internal resistance of thermal electric devices were analyzed, and MPPT control methods were compared. The Perturbation and Observation (P&O) control method is economically inefficient because two sensors are required to measure the voltage and current of a Thermoelectric Generator(TEG). Therefore, this paper proposes a new MPPT control method that tracks MPP using only one sensor for the regulation of the output voltage. The proposed MPPT control method uses the relationship between the output voltage of the load and the duty ratio. Control is done by periodically sampling the output voltage of the DC-DC converter to increase or decrease the duty ratio to find the optimal duty ratio and maintain the MPP. A DC-DC converter was designed using a cascaded boost-buck converter, which has a two-switch topology. The proposed MPPT control method was verified by simulations using PSIM, and the results show that a voltage, current, and power of V=4.2 V, I=2.5 A, and P=10.5 W were obtained at the MPP from the V-I characteristic curve of the TEG.

Study of fuel cell CHP-technology on electricity generation sector using LEAP-model (LEAP 모형을 이용한 연료전지 열병합발전설비 도입에 따른 온실가스배출저감 잠재량 분석)

  • Shin, Seung-Bok;Jun, Soo-Young;Song, Ho-Jun;Park, Jong-Jin;Maken, Sanjeev;Park, Jin-Won
    • Journal of Energy Engineering
    • /
    • v.18 no.4
    • /
    • pp.230-238
    • /
    • 2009
  • We study about small gas engine and fuel cell CHP (Combined Heat and Power) as the technologies for energy conservation and $CO_2$ emissions reduction. Korea government plans to use them in near future. This study quantitatively analyzed energy consumption and $CO_2$ emissions reduction potential of small CHP instead of existing electric power plant (coal steam, combined cycle and oil steam) using LEAP (Long-range Energy Alternative Planning system) as energy-economic model. Three future scenarios are discussed. In every scenario similar condition for each CHP is used. Alternative scenario I: about 6.34% reduction in $CO_2$ emissions is observed in 2019 due to increase in amount of gas engine CHP and fuel cell CHP while coal use in thermoelectric power plant is almost stagnant. In alternative scenario II: a small 0.8% increase in $CO_2$ emission is observed in 2019 keeping conditions similar to alternative scenario I but using natural gas in combined cycle power plant instead of coal. During alternative scenario II overall $CO_2$ emission reduction is observed in 2019 due to added heat production from CHP. Alternative scenario III: about 0.8% reduction in $CO_2$ emissions is observed in 2019 using similar CHP as AS I and AS II. Here coal and oil are used in thermoelectric power plant but the quantity of oil and coal is almost constant for next decade.

Study of On-chip Liquid Cooling in Relation to Micro-channel Design (마이크로 채널 디자인에 따른 온 칩 액체 냉각 연구)

  • Won, Yonghyun;Kim, Sungdong;Kim, Sarah Eunkyung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.22 no.4
    • /
    • pp.31-36
    • /
    • 2015
  • The demand for multi-functionality, high density, high performance, and miniaturization of IC devices has caused the technology paradigm shift for electronic packaging. So, thermal management of new packaged chips becomes a bottleneck for the performance of next generation devices. Among various thermal solutions such as heat sink, heat spreader, TIM, thermoelectric cooler, etc. on-chip liquid cooling module was investigated in this study. Micro-channel was fabricated on Si wafer using a deep reactive ion etching, and 3 different micro-channel designs (straight MC, serpentine MC, zigzag MC) were formed to evalute the effectiveness of liquid cooling. At the heating temperature of $200^{\circ}C$ and coolant flow rate of 150ml/min, straight MC showed the high temperature differential of ${\sim}44^{\circ}C$ after liquid cooling. The shape of liquid flowing through micro-channel was observed by fluorescence microscope, and the temperarue differential of liquid cooling module was measuremd by IR microscope.

Thermopower Wave in Core-Shell Structures of Carbon Nanotube Chemical Fuels (나노튜브/화학연료의 동축 구조에서 생성되는 열동력 파도를 이용한 전기 에너지 생성)

  • Choi, Wonjoon;Strano, Michael S.
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.6
    • /
    • pp.615-620
    • /
    • 2013
  • There is considerable interest in developing energy sources capable of larger power densities. In our previous works, we proved that by coupling an exothermic chemical reaction with 1D nanostructures, a self-propagating reactive wave can be driven along its length with a concomitant electrical pulse of high specific power, which we identified as a thermopower wave. Herein, we discuss details about many different aspects of a thermopower wave. Different alignment degree in vertically aligned CNT films is evaluated in the reactive wave speed and correlated with its thermal reaction that affects the change in the magnitude of energy generation. The effects of the temperature-dependent properties of chemical fuels and CNTs are evaluated. Furthermore, we explore the convection and radiation portions in this thermal wave as well as the synchronization between the thermal reaction transfer and the oscillation of the electrical signal.

A study on fundametal properties of thermoelectric power plant pond-ash in Korea (국내 화력발전소 매립회의 기초물성에 관한 연구)

  • Lee, Bong-Chun;Jung, Sang-Hwa;Kim, Jin-Sung;Kim, Joo-Hyung;Moon, Jae-Heum;Kim, Tae-Sang
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.841-844
    • /
    • 2008
  • Non-refining fly ash and bottom ash, the byproducts generated from the coal-fired power stations, have usually been disposed of in onshore ash disposal sites. With an increase of power consumption due to industrial development, the generation of coal ash has been growing tremendously. Current insufficiency of disposal sites and environmental concerns over newly-built disposal sites have also led a growing need to utilize the coal ash. Accordingly, this paper compares and analyzes the fundamental properties of the coal ash collected from each disposal sites in order to increase the usability of the coal ash generated from coal-fired power stations. The results of the study indicate that coal ash shall be separately applied by the properties for each intended use as the ash greatly differs in its properties depending on the site of disposal. In particular, it is shown that the overall evaluation on the ash shall be necessary as the quality might be varied by the change of absorptance when applied as an aggregate for concrete. From the examination on the salt content, it has been observed that the ash can be applied as an aggregate for concrete only after more than 3 times of washing process.

  • PDF

Impact of axial power distribution on thermal-hydraulic characteristics for thermionic reactor

  • Dai, Zhiwen;Wang, Chenglong;Zhang, Dalin;Tian, Wenxi;Qiu, Suizheng;Su, G.H.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.12
    • /
    • pp.3910-3917
    • /
    • 2021
  • Reactor fuel's power distribution plays a vital role in designing the new generation thermionic Space Reactor Power Systems (SRPS). In this paper, the 1/12th SPACE-R's full reactor core was numerically analyzed with two kinds of different axial power distribution, to identify their impacts on thermal-hydraulic and thermoelectric characteristics. In the benchmark study, the maximum error between numerical results and existing data or design values ranged from 0.2 to 2.2%. Four main conclusions were obtained in the numerical analysis: a) The axial power distribution has less impact on coolant temperature. b) Axial power distribution influenced the emitter temperature distribution a lot, when the core power was cosine distributed, the maximum temperature of the emitter was 194 K higher than that of the uniform power distribution. c) Comparing to the cosine axial power distribution, the uniform axial power distribution would make the maximum temperature in each component of the reactor core much lower, reducing the requirements for core fuel material. d) Voltage and current distribution were similar to the axial electrode temperature distribution, and the axial power distribution has little effect on the output power.

Recent Progress in Air-Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2010 (설비공학 분야의 최근 연구 동향 : 2010년 학회지 논문에 대한 종합적 고찰)

  • Han, Hwa-Taik;Lee, Dae-Young;Kim, Seo-Young;Choi, Jong-Min;Kim, Su-Min;Kwon, Young-Chul;Baik, Yong-Kyu
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.6
    • /
    • pp.449-469
    • /
    • 2011
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigerating Engineering during 2010. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) Research trends of thermal and fluid engineering have been surveyed as groups of general thermal and fluid flow, fluid machinery, and new and renewable energy. Various topics were presented in the field of general thermal and fluid flow. Research issues mainly focused on the thermal reliability of axial fan and compressor in the field of fluid machinery. Studies on the design of ground source heat pump systems and solar chemical reactors were executed in the field of new and renewable energy. (2) Research works on heat transfer area have been reviewed in the categories of heat transfer characteristics and industrial heat exchangers. Researches on heat transfer characteristics included heat transfer in thermoelectric cooling/power generation systems, combined heat and power systems, carbon nano fluid with PVP, channel filled with metal foam and smoke ventilation in a rescue station of a railroad tunnel. Also the studies on flow boiling of R123/oil mixture in a plain tube bundle and R410A charge amount in an air cooled mini-channel condenser were reported. In the area of industrial heat exchangers, researches on plate heat exchanger, shell and tube heat exchanger, enthalpy exchanger, micro channel PCHE were performed. (2) Research works on heat transfer area have been reviewed in the categories of heat transfer characteristics and industrial heat exchangers. Researches on heat transfer characteristics included heat transfer in thermoelectric cooling/power generation systems, combined heat and power systems, carbon nano fluid with PVP, channel filled with metal foam and smoke ventilation in a rescue station of a railroad tunnel. Also the studies on flow boiling of R123/oil mixture in a plain tube bundle and R410A charge amount in an air cooled mini-channel condenser were reported. In the area of industrial heat exchangers, researches on plate heat exchanger, shell and tube heat exchanger, enthalpy exchanger, micro channel PCHE were performed. (3) Refrigeration systems with alternative refrigerants such as hydrocarbons, mixed refrigerants, and CO2 were studied. Performance improvement of refrigeration systems are tried applying various ideas of refrigerant subcooling, dual evaporator with hot gas bypass control and feedforward control. The hybrid solar systems combining the solar collection devices with absorption chillers or compression heat pumps are simulated and studied experimentally as well to improve the understanding and the feasibility for actual applications. (4) Research trend in the field of mechanical building facilities has been found to be mainly focused on field applications rather than performance improvements. Various studies on heating and cooling systems, HVAC facilities, indoor air environments and energy resources were carried to improve the maintenance and management of building service equipments. In the field of heating and cooling systems, papers on a transformer cooling system, a combined heat and power, a slab thermal storage and a heat pump were reported. In the field of HVAC facilities, papers on a cooling load, an ondol and a drying were presented. Also, studies on HVAC systems using unutilized indoor air environments and energy resources such as air curtains, bioviolence, cleanrooms, ventilation, district heating, landfill gas were studied. (5) In the field of architectural environment and energy, studies of various purposes were conducted such as indoor environment, building energy, renewable energy and green building. In particular, renewable energy and building energy-related researches have mainly been studied reflecting the global interest. In addition, many researches which related the domestic green building certification of school building were performed to improve the indoor environment of school.

Thermoelectric Power Generation Characteristics of the (Pb,Sn)Te/(Bi,Sb)2Te3Functional Gradient Materials with Various Segment Ratios (분할접합비에 따른 (Pb,Sn)Te/(Bi,Sb)2Te3 경사기능소자의 열전발전특성)

  • Lee, Kwang-Yong;Hyun, Dow-Bin;Oh, Tae-Sung
    • Korean Journal of Materials Research
    • /
    • v.12 no.12
    • /
    • pp.911-917
    • /
    • 2002
  • 0.5 at% $Na_2$Te-doped ($Pb_{0.7}Sn_{0.3}$)Te and ($Bi_{0.2}Sb_{0.8}$)$_2$$Te_3$ powders were fabricated by mechanical alloying process. 0.5 at% Na$_2$Te-doped ($Pb_{0.7}Sn_{0.3}$)Te powders were charged at one end of mold and ($Bi_{0.2}Sb_{0.8}$)$_2$$Te_3$ powders were charged at the other end of a mold. Then these powders were hot-pressed to form p-type ($Pb_{0.7}Sn_{0.3}$)Te/($Bi_{0.2}Sb_{0.8}$)$_2$$Te_3$ functional gradient materials with the segment ratios (the ratio of ($Pb_{0.7}Sn_{0.3}$)Te to ($Bi_{0.2}Sb_{0.8}$)$_2$$Te_3$ ) of 1:2, 1:1, and 2:1. Power generation characteristics of the ($Pb_{0.7}Sn_{0.3}$)Te/($Bi_{0.2}Sb_{0.8}$)$_2$$Te_3$ were measured. When the temperature difference ΔT at both ends of the specimen was larger than $300^{\circ}C$, the ($Pb_{0.7}Sn_{0.3}$)Te/($Bi_{0.2}Sb_{0.8}$)$_2$$Te_3$ with the segment ratios of 1:2 and 1:1 exhibited larger output power than those of the ($Bi_{0.2}Sb_{0.8}$)$_2$$Te_3$ and 0.5 at% $Na_2$ Te-doped ($Pb_{0.7}Sn_{0.3}$)Te alloys. The maximum output power of the ($Pb_{0.7}Sn_{0.3}$)Te/($Bi_{0.2}Sb_{0.8}$)$_2$$Te_3$ predicted with the measured Seebeck coefficient and the estimated electrical resistivity was in good agreement with the measured maximum output power.

An analysis on the characteristics of regasification system for LNG-FSRU depending on the changes in performance with vaporization and temperature of the heat source (LNG-FSRU용 재기화 시스템의 열원 온도 및 기화성능의 변동에 따른 시스템 특성분석)

  • Lee, Yoon-Ho;Kim, You-Taek;Kang, Ho-Keun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.6
    • /
    • pp.625-631
    • /
    • 2014
  • In this study, according to increase of thermoelectric power plants that use LNG, LNG-FSRU(Floating-Storage and Regasification Unit) appeared and it is installed on the Topside in order to deliver in a gaseous state to consumers who are in the shore. This study about the study on the characteristics analysis of the system depending on changes in performance with the vaporization and temperature of the heat source. For the characteristics analysis of the system, we devided vaporization method into Ethylene glycol water vaporization method and sea water as a heat source. Then the system that can vaporize 200ton per hour of LNG of $-157.9^{\circ}C$ and 10,400kPa was configured, and according to the temperature of supplied sea water, required minimum flow rate value was calculated. Also in case of using Ethylene glycol Water as a vaporization method, providing for regional and seasonal factors such as decrease of temperature of water. The system is configured by adding a steam boiler of $174.5^{\circ}C$, 775kPa as heat source. The generation amount of the steam required according to the performance of the vaporizer compared to the water temperature changes in the steam boiler and the amount of required evaporative performance due to changes in the quantity of steam and Ethylene glycol Water was confirmed.

A Study on the RDF Manufacturing of Coffee grounds by using Pilot scale Oil-drying Equipment (Pilot scale 유중건조 장비를 이용한 커피찌꺼기의 고형연료화 연구)

  • Kwon, Ik-Beom;Ha, Jin-Wook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.2
    • /
    • pp.443-450
    • /
    • 2019
  • We studied to find the optimal manufacturing conditions of coffee grounds sludge RDF with oil drying method. We expanded the lab scale to pilot scale to compare the efficiency of the oil-drying equipment and The selection of the ratio of coffee grounds and oil, the setting temperature, and the temperature change and water content with time were measured. In order to analyze the characteristics of the research results, characteristics of solid fuels produced(Coffee grounds of oil-dried) by calorimeter, TGA, combustion equipment, and combustion gas measuring instrument were analyzed. As a result, the ratio of oil to coffee grounds was 4: 1, and when the setting temperature was set to $300^{\circ}C$, the water content reached 10wt.% or less within 20 minutes. ln addition, it showed high calorific value of 6,273kcal/kg. However, coffee grounds had a similar composition to wood and showed high luminance and produced a lot of CO in combustion gas. As a result, it is considered to be unsuitable for thermoelectric power plant and camping fuel, but the initial ignition speed is high and the heat generation is high, so it is considered that it can replace the fuels for current use.