Browse > Article
http://dx.doi.org/10.3795/KSME-B.2013.37.6.615

Thermopower Wave in Core-Shell Structures of Carbon Nanotube Chemical Fuels  

Choi, Wonjoon (School of Mechanical Engineering, Korea Univ.)
Strano, Michael S. (Department of Chemical Engineering, Massachusetts Institute of Technology)
Publication Information
Transactions of the Korean Society of Mechanical Engineers B / v.37, no.6, 2013 , pp. 615-620 More about this Journal
Abstract
There is considerable interest in developing energy sources capable of larger power densities. In our previous works, we proved that by coupling an exothermic chemical reaction with 1D nanostructures, a self-propagating reactive wave can be driven along its length with a concomitant electrical pulse of high specific power, which we identified as a thermopower wave. Herein, we discuss details about many different aspects of a thermopower wave. Different alignment degree in vertically aligned CNT films is evaluated in the reactive wave speed and correlated with its thermal reaction that affects the change in the magnitude of energy generation. The effects of the temperature-dependent properties of chemical fuels and CNTs are evaluated. Furthermore, we explore the convection and radiation portions in this thermal wave as well as the synchronization between the thermal reaction transfer and the oscillation of the electrical signal.
Keywords
Nanotube; Carbon nanotube; Thermoelectric; Thermopower Wave; Chemical Fuels;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Choi, W., Hong, S., Abrahamson, J. T., Han, J. H., Song, C., Nair, N., Baik, S. and Strano, M. S., 2010, "Chemically Driven Carbon-Nanotube-Guided Thermopower Waves," Nat Mater Vol. 9, No. 5, pp. 423-429.   DOI   ScienceOn
2 Hata, K., Futaba, D. N., Mizuno, K., Namai, T., Yumura, M. and Iijima, S., 2004, "Water-Assisted Highly Efficient Synthesis of Impurity-Free Single- Waited Carbon Nanotubes," Science Vol. 306, No. 5700, pp. 1362-1364.   DOI   ScienceOn
3 Kim, P., Shi, L., Majumdar, A. and McEuen, P. L., 2001, "Thermal Transport Measurements of Individual Multiwalled Nanotubes," Phys Rev Lett Vol. 8721, No. 21, p. 215502.
4 Takashiri, M., Takiishi, M., Tanaka, S., Miyazaki, K. and Tsukamoto, H., 2007, "Thermoelectric Properties of n-Type Nanocrystalline Bismuth-Telluride-Based Thin Films Deposited by Flash Evaporation," J Appl Phys Vol. 101, No. 7, p. 074301.   DOI   ScienceOn
5 Zhao, X. B., Ji, X. H., Zhang, Y. H., Zhu, T. J., Tu, J. P. and Zhang, X. B., 2005, "Bismuth Telluride Nanotubes and the Effects on the Thermoelectric Properties of Nanotube-Containing Nanocomposites," Appl Phys Lett Vol. 86, No. 6, p. 062111.   DOI   ScienceOn
6 Li, L., Yang, Y. W., Huang, X. H., Li, G. H., Ang, R. and Zhang, L. D., 2006, "Fabrication and Electronic Transport Properties of Bi Nanotube Arrays," Appl Phys Lett Vol. 88, No. 10, p. 103119.   DOI   ScienceOn
7 Boukai, A. I., Bunimovich, Y., Tahir-Kheli, J., Yu, J. K., Goddard, W. A. and Heath, J. R., 2008, "Silicon Nanowires as Efficient Thermoelectric Materials," Nature Vol. 451, No. 7175, pp. 168-171.   DOI   ScienceOn
8 Venkatasubramanian, R., Siivola, E., Colpitts, T. and O'Quinn, B., 2001, "Thin-Film Thermoelectric Devices with High Room-Temperature Figures of Merit," Nature Vol. 413, No. 6856, pp. 597-602.   DOI   ScienceOn
9 Weber, R. O., Mercer, G. N., Sidhu, H. S. and Gray, B. F., 1997, "Combustion Waves for Gases (Le=1) and Solids (L->infinity)," Proceedings of the Royal Society of London Series a-Mathematical Physical and Engineering Sciences Vol. 453, No. 1960, pp. 1105-1118.   DOI   ScienceOn
10 Li, C. Y. and Chou, T. W., 2005, "Quantized Molecular Structural Mechanics Modeling for Studying the Specific Heat of Single-Walled Carbon Nanotubes," Physical Review B Vol. 71, No. 7, p. 075409.   DOI   ScienceOn
11 Please, C. P., Liu, F. and McElwain, D. L. S., 2003, "Condensed Phase Combustion Travelling Waves with Sequential Exothermic or Endothermic Reactions," Combustion Theory and Modelling Vol. 7, No. 1, pp. 129-143.   DOI   ScienceOn
12 Yu, C. H., Shi, L., Yao, Z., Li, D. Y. and Majumdar, A., 2005, "Thermal Conductance and Thermopower of an Individual Single-Wall Carbon Nanotube," Nano Lett Vol. 5, No. 9, pp. 1842-1846.   DOI   ScienceOn
13 Dresselhaus, M. S. and Avouris, P., 2001, "Introduction to Carbon Materials Research," Top Appl Phys Vol. 80, No., pp. 1-9.   DOI
14 Ebbesen, T. W., Lezec, H. J., Hiura, H., Bennett, J. W., Ghaemi, H. F. and Thio, T., 1996, "Electrical Conductivity of Individual Carbon Nanotubes," Nature Vol. 382, No. 6586, pp. 54-56.   DOI
15 Ando, Y., Zhao, X., Shimoyama, H., Sakai, G. and Kaneto, K., 1999, "Physical Properties of Multiwalled Carbon Nanotubes," Int J Inorg Mater Vol. 1, No. 1, pp. 77-82.   DOI   ScienceOn
16 Adu, C. K. W., Sumanasekera, G. U., Pradhan, B. K., Romero, H. E. and Eklund, P. C., 2001, "Carbon Nanotubes: A Thermoelectric Nano-Nose," Chem Phys Lett Vol. 337, No. 1-3, pp. 31-35.   DOI   ScienceOn
17 Sumanasekera, G. U., Pradhan, B. K., Romero, H. E., Adu, K. W. and Eklund, P. C., 2002, "Giant Thermopower Effects from Molecular Physisorption on Carbon Nanotubes," Phys Rev Lett Vol. 89, No. 16, p. 166801.   DOI   ScienceOn
18 Chang, C. W., Okawa, D., Majumdar, A. and Zettl, A., 2006, "Solid-State Thermal Rectifier," Science Vol. 314, No. 5802, pp. 1121-1124.   DOI   ScienceOn
19 Chang, C. W., Okawa, D., Garcia, H., Majumdar, A. and Zettl, A., 2007, "Nanotube Phonon Waveguide," Phys Rev Lett Vol. 99, No. 4, p. 045901.   DOI
20 Parr, T. and Hanson-Parr, D., 1998, "RDX Ignition Flame Structure," Twenty-Seventh Symposium (International) on Combustion, Vols 1 and 2 Vol., No., pp. 2301-2308.
21 Oyumi, Y., 1988, "Melt phase Decomposition of RDX and Two Nitrosamine Derivatives," Propell. Explos. Pyrot. Vol. 13, No., pp. 42-47.   DOI   ScienceOn
22 Liau, Y. C., Kim, E. S. and Yang, V., 2001, "A Comprehensive Analysis of Laser-Induced Ignition of RDX Monopropellant," Combust. Flame Vol. 126, No. 3, pp. 1680-1698.   DOI   ScienceOn
23 Volkov, E. N., Paletsky, A. A. and Korobeinichev, O. P., 2008, "RDX Flame Structure at Atmospheric Pressure," Combust. Explo. Shock. Vol. 44, No. 1, pp. 43-54.   DOI
24 Li, C. Y. and Chou, T. W., 2004, "Modeling of elastic Buckling of Carbon Nanotubes by Molecular Structural Mechanics Approach," Mechanics of Materials Vol. 36, No. 11, pp. 1047-1055.   DOI   ScienceOn
25 Richard E. Sonntag, G. J. V. w., 1991, Introduction to Thermodynamics: Classical and Statistical. 3rd ed ed., John Wiley & Sons:.
26 Begtrup, G. E., Ray, K. G., Kessler, B. M., Yuzvinsky, T. D., Garcia, H. and Zettl, A., 2007, "Probing Nanoscale Solids at Thermal Extremes," Physical Review Letters Vol. 99, No. 15, p. 155901.   DOI   ScienceOn