• Title/Summary/Keyword: Thermodynamic Criteria

Search Result 18, Processing Time 0.02 seconds

Design and Assessment of an Oil-treatment Process for Bitumen Separation (비투멘 유체 분리를 위한 오일처리공정의 설계와 평가)

  • Jeong, Moon;Lee, Sang-Jun;Shin, Heung-Sik;Jo, Eun-Bi;Hwang, In-Ju;Kang, Choon-Hyung
    • The KSFM Journal of Fluid Machinery
    • /
    • v.19 no.3
    • /
    • pp.5-9
    • /
    • 2016
  • The purpose of this paper is to define criteria to be used as part of the engineering design for an oil sands plant equipped with the steam assisted gravity drainage process. In this effort, the oil treatment process of an oil sands plant on a pilot scale was focused for detailed investigation. The thermodynamic properties of the process fluid, which is mainly composed of bitumen and water, were estimated with the CPA model. The commercial tool aspen HYSYS was used for the analysis throughout this work along with the provided input data and some necessary assumptions. From the simulation results, the heat and mass balances for a 300 BPD plant were established in order to define standard data for its modular design. In particular, the basis of design for equipment size, heat transfer areas, capital cost and operation cost was extensively discussed.

The Effect of EGR Pipe Configuration on EGR Characteristics of Diesel Engine with Variable Geometry Turbocharger (EGR관 형상이 가변형상 과급기를 장착한 디젤엔진의 EGR 특성에 미치는 영향)

  • Jeong, Soo-Jin;Chung, Jae-Woo;Kang, Jeong-Ho;Kang, Woo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.2
    • /
    • pp.65-73
    • /
    • 2007
  • The use of an Exhaust Gas Recirculation(EGR) for a diesel engine with variable geometry turbocharger(VGT) has confronted how to obtain the amount of EGR for NOx reduction requirement at wide operating range and less side effect. Through a combined effort of modeling(wave action simulation) and experiment, an investigation into the effect of EGR area ratio and pipe length on EGR characteristics of common rail diesel engine with VGT has been performed. For accurate computation, calibration of constants involved in empirical and semi-empirical correlations has been performed at a specific operating point, before of its use for engine simulation. From the results of this study, it was found that EGR rate is sharply increased with increasing EGR area ratio until area ratio of 0.3. However, the effect of EGR area ratio on EGR rate is negligible beyond this criteria. This study also investigates the effect of EGR pipe length on a EGR amount and pulsating flow characteristics at EGR junction. The results showed that the longer EGR pipe length, the lower EGR amount was achieved due to the flow loss resulting in lower amplitude of pressure wave.

Performance Evaluation of an Oxy-coal-fired Power Generation System - Thermodynamic Evaluation of Power Cycle (순산소 석탄 연소 발전 시스템의 성능 평가 - 동력 사이클의 열역학적 해석)

  • Lee, Kwang-Jin;Choi, Sang-Min;Kim, Tae-Hyung;Seo, Sang-Il
    • Journal of the Korean Society of Combustion
    • /
    • v.15 no.2
    • /
    • pp.1-11
    • /
    • 2010
  • Power generation systems based on the oxy-coal combustion with carbon dioxide capture and storage (CCS) capability are being proposed and discussed lately. Although a large number of lab scale studies for oxy-coal power plant have been made, studies of pilot scale or commercial scale power plant are not enough. Only a few demonstration projects for oxy-coal power plant are publicized recently. The proposed systems are evolving and various alternatives are to be comparatively evaluated. This paper presents a proposed approach for performance evaluation of a commercial 100 MWe class power plant, which is currently being considered for 'retrofitting' for the demonstration of the concept. The system is configurated based on design and operating conditions with proper assumptions. System components to be included in the discussion are listed. Evaluation criteria in terms of performance are summarized based on the system heat and mass balance and simple performance parameters, such as the fuel to power efficiency and brief introduction of the second law analysis. Also, gas composition is identified for additional analysis to impurities in the system including the purity of oxygen and unwanted gaseous components of nitrogen, argon and oxygen in air separation unit and $CO_2$ processing unit.

Numerical Study of Cavitating flow around Axysimmetric and 2D Body in Cryogenic Fluid (극저온 유체내에서 운행하는 물체 주위의 공동현상 해석에 관한 연구)

  • Lee, Se-Young;Yu, Jung-Min;Lee, Chang-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.04a
    • /
    • pp.309-312
    • /
    • 2007
  • The cryogenic fluid is the propellant for the liquid rocket engine. The design of space launcher vehicle is guided by minimum size and weight criteria, so the turbo pump solicits high impeller speed. Such high speed results in a zone of pressure drop below vapor pressure causing caivtation around inducer blades. The cryogenic fluid has different characters from isothermal fluid like water. The cryogenic fluid has very sensible thermodynamic properties and the phase change undergoes evaporative cooling. So, the developed code has to be modified cavitation modeling and it is added the energy equation for temperature sensitivity.

  • PDF

Electrochemical Corrosion Behavior of Iron in Lithium-ion Battery Electrolyte

  • Kim, Jineun;Lee, Suhyun;Kim, Kun Woo;Son, Jungman;Mun, Junyoung
    • Journal of Electrochemical Science and Technology
    • /
    • v.12 no.4
    • /
    • pp.424-430
    • /
    • 2021
  • The element iron (Fe) is affordable and abundantly available, and thus, it finds use in a wide range of applications. As regards its application in rechargeable lithium-ion batteries (LIBs), the electrochemical reactions of Fe must be clearly understood during battery charging and discharging with the LIB electrolyte. In this study, we conducted systematic electrochemical analyses under various voltage conditions to determine the voltage at which Fe corrosion begins in general lithium salts and organic solvents used in LIBs. During cyclic voltammetry (CV) experiments, we observed a large corrosion current above 4.0 V (vs. Li/Li+). When a constant voltage of 3.7 V (vs. Li/Li+), was applied, the current did not increase significantly at the beginning, similar to the CV scenario; on the other hand, at a voltage of 3.8 V (vs. Li/Li+), the current increased rapidly. The impact of this difference was visually confirmed via scanning electron microscopy and optical microscopy. Our X-ray photoelectron spectroscopy measurements showed that at 3.7 V, a thick organic solid electrolyte interphase (SEI) was formed atop a thin fluoride SEI, which means that at ≥3.8 V, the SEI cannot prevent Fe corrosion. This result confirms that Fe corrosion begins at 3.7 V, beyond which Fe is easily corrodible.

An in-silico approach to design potential siRNAs against the ORF57 of Kaposi's sarcoma-associated herpesvirus

  • Rahman, Anisur;Gupta, Shipan Das;Rahman, Md. Anisur;Tamanna, Saheda
    • Genomics & Informatics
    • /
    • v.19 no.4
    • /
    • pp.47.1-47.12
    • /
    • 2021
  • Kaposi's sarcoma-associated herpesvirus (KSHV) is one of the few human oncogenic viruses, which causes a variety of malignancies, including Kaposi's sarcoma, multicentric Castleman disease, and primary effusion lymphoma, particularly in human immunodeficiency virus patients. The currently available treatment options cannot always prevent the invasion and dissemination of this virus. In recent times, siRNA-based therapeutics are gaining prominence over conventional medications as siRNA can be designed to target almost any gene of interest. The ORF57 is a crucial regulatory protein for lytic gene expression of KSHV. Disruption of this gene translation will inevitably inhibit the replication of the virus in the host cell. Therefore, the ORF57 of KSHV could be a potential target for designing siRNA-based therapeutics. Considering both sequence preferences and target site accessibility, several online tools (i-SCORE Designer, Sfold web server) had been utilized to predict the siRNA guide strand against the ORF57. Subsequently, off-target filtration (BLAST), conservancy test (fuzznuc), and thermodynamics analysis (RNAcofold, RNAalifold, and RNA Structure web server) were also performed to select the most suitable siRNA sequences. Finally, two siRNAs were identified that passed all of the filtration phases and fulfilled the thermodynamic criteria. We hope that the siRNAs predicted in this study would be helpful for the development of new effective therapeutics against KSHV.

Structure/Property of Adhesives and Adhesion Performance (접착제의 구조물성과 접착특성)

  • Hiroshi Mizumachi
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.29 no.1
    • /
    • pp.73-83
    • /
    • 1997
  • Most of the materials used in various industrial fields and also in our daily life are multi-component materials or composite materials, and it is well known that there are many cases where adhesion between the constituents within the bonded systems plays an important role. There are various types of performance evaluation tests for the bonded materials, among which tests for evaluating the bond performance under various conditions may be regarded as the most interesting ones for those engaged in work related to adhesion. I have studied on the mechanism of adhesion form the rheological standpoint with my colleagues, including some students from Korea, and I am very happy to be able to have a talk on some of our research works. In Japan, the so-called "adhesives" are usually classified into two categories;adhesives and pressure sensitive adhesives (PSA). Adhesives are the materials which solidify after bonding and are after used as the structural adhesives because the adhesive strength is comparatively strong. On the other hand, the pressure sensitive adhesives never solidify and are used as PSA tapes, labels or decals. About the adhesives, we have examined the dependence of adhesive strength(shear, tensile, peel) upon both temperature and rate of deformation, and found out some empirical rules which are applicable to most of the adhesive systems. We have also developed a simplified theory of adhesion, which is deseribed in terms of mechanical equivalent mode1 and a few failure criteria. Although some of the common rules can be accounted for according to this theory, it must be pointed out that a fracture mechanical approach ms inevitable especially in the region where the meehanical relaxation time of the adhesive is extremely large [W. W. Lim and H. Mizumachi]. About the pressure sensitive adhesives, we have studied on the PSA performance (peel, tack, holding power) as a function of both the viscoelastic properties and surface chemical properties of the materials, and found out some rules, and again we have developed a theory which deseribes the mechanism. And in addition, we have studied on the miscibility between linear polymers and oligomers, because PSA is generally manufactured by blending gums and tackifier resins. Many phase diagrams have been found and some of them have been analyzed on thermodynamic basis, and it became evident that the miscibility is a very important factor in PSA [H. J. Kin and H. Mizumachi]. In this presentation, I want to emphasize the fact that the adhesion performance is closely related to the structure/property of the adhesives.adhesives.

  • PDF

A Study on the Predictability of Moist Convection during Summer based on CAPE and CIN (대류가용잠재에너지와 대류억제도에 입각한 여름철 습윤 대류 예측성에 대한 연구)

  • Doyeol Maeng;Songlak Kang
    • Journal of the Korean earth science society
    • /
    • v.44 no.6
    • /
    • pp.540-556
    • /
    • 2023
  • This study analyzed rawinsonde soundings observed during the summer and early fall seasons (June, July, August and September) on the Korean peninsula to examine the utility of the Convective Available Potential Energy (CAPE) and Convective Inhibition (CIN) in predicting the occurrence of deep moist convection and precipitation. Rawinsonde soundings are categorized into two groups based on thermodynamic criteria: high CAPE and low CIN represent a high potential for deep moist convection; low CAPE and high CIN indicate conditions unfavorable for deep convection. A statistical hypothesis test is conducted to determine whether the two groups are significantly different in terms of 12-hour cumulative precipitation, 12-hour mean cloud base, and 12-hour mean mid-level cloud cover. The results, in the case of no-precipitation, reveal statistically significant differences between the two groups, except for the 12-hour mean cloud base during the 21:01-09:00 KST time period. This suggests that the group characterized by high CAPE and low CIN is more conducive to the occurrence of deep moist convection and precipitation than the group with low CAPE and high CIN.