• Title/Summary/Keyword: Thermocycling effect

Search Result 94, Processing Time 0.029 seconds

EFFECT OF COBALT-CHROMIUM ALLOY SURFACE TREATMENT WHEN BONDING WITH 4-META/MMA-TBB RESIN (Cobalt-Chromium 합금의 표면처리가 4-META/MMA-TBB 레진과의 접착에 미치는 영향)

  • Jin, Jae-Sik;Kim, Kyo-Han;Lee, Cheong-Hee;Jo, Kwang-Hun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.38 no.4
    • /
    • pp.510-525
    • /
    • 2000
  • The effects of pretreatment of Co-Cr alloy, including two adhesive primers that contain either MDP or MAC-10, and silicoating on the bond The result sobtained as follows; o Strength of 4-META/MMA-TBB resin were investigated using FT-IR, SEM, and EDAX. o In the SEM observation of surface morphologies, the sandblasted specimen exibited a very rough surface, whereas the surfaces of the two groups primed with either MDP or MAC-10 were covered with a layer of primer, and the surface morphology of the silicoated specimen remained almost the same after sandblasting. o Before the thermocycling tests, the group treated with MDP demonstrated the highest mean tensile bond strength and the sandblasted group showed the lowest bond strength. o After 20,000 thermocyling, the mean tensile bond strength of the sandblasted group exhibited a 50% reduction in bond strength, while the others showed a $20\sim30%$ reduction. o Observation of the metal-resin interface revealed that in all groups the resin permeated the rough surface formed by sandblasting thereby producing a mechanical bond between the metal and the resin. It was also found that thermocycling resulted in a gap formation at the metal-resin interface of the specimens, and the sandblasted group exhibited a larger gap width than the other groups. o In fracture mode, all specimens indicated a cohesive fracture within the resin before thermocycling. However, thermocyling produced adhesive failure at the edge of the resin-metal interface in most specimens. The sandblasted group, which exhibited the lowest bond strength after thormocycling, also demonstrated the largest area of adhesive failure.

  • PDF

THE EFFECTS OF BARIUM SULFATE AND IODIDE COMPOUND ON THE CHARACTERISTICS OF DENTAL ACRYLIC RESINS (치과용 아크릴릭 레진의 방사선 불투과도에 관한 연구 - 황산바륨과 요오드 화합물 첨가 -)

  • Lee Yong-Keun;Lee Keon-Il;Jung Sung-Woo
    • Journal of Korean Academy of Oral and Maxillofacial Radiology
    • /
    • v.26 no.2
    • /
    • pp.133-145
    • /
    • 1996
  • Aspirating or swallowing foreign bodies is a common occurrence. If they are wholly or partly radiopaque, their localization in and progress through the gastrointestinal tract can be more effective. Of the dental origin foreign materials swallowed, the most common things are fragments of anterior maxillary partial denture. But the radiopacity of denture base resins is not sufficient to determine the location of the objects. The purpose of this study was to develop a radiopaque dental acrylic resin, which has clinically detectible radiopacity with minimal change of mechanical properties and color. The radiopacity, color change(CIE 6..E) and microhardness of acrylic resins were determined after mixing barium sulfate or iodide compound. Thermocycling course was conducted to determine the change of characteristic of resins after using for a long time in the mouth. Five or ten percent of barium sulfate to total weight of cured material was mixed with heat curing dental acrylic resin or chemically curing orthodontic resin. In the case of iodide compound, the mixing ratio was two or three percent. After mixing the high radiopaque materials, resin was cured to 20×20×2 mm plate, polished with #600 sand paper and finally polished with Microcloth(Buehler). The specimens were thermocycled in 5 and 55 t distilled water for 2,000 times, and the measurement of radiopacity, color and Vickers hardness was repeated every 500 times thcrmocycling. The radiopacity of specimens on the X -ray films was measured with densitometer(X-rite). The color change was detennined with differential colorimeter(Model TC-6FX, Tokyo Denshoku), and the Vickers hardness number was measured with microhardness tester(Mitsuzawa). The following results were obtained : 1. All the three variables, the kinds of acrylic resins, the mixing or the kinds of high radiopaque materials and thermocycling, had combined effect on the radiopacity of the dental acrylic resins(p<0.0l). 2. The two variables, the mixing or the kinds of high radiopaque materials and thermocycling, influenced on the radiopacity of the dental acrylic resins(p<0.01). But the kinds of acrylic resins did not influence on the color change of mixed dental acrylic resins(p>0.05). 3. Each of the three variables, the kinds of acrylic resins, the mixing or the kinds of high radiopaque materials and thermocycling, influenced on the radiopacity of dental acrylic resins(p<0.0l). 4. The high radiopaque materials used in this study did not yield clinically usable radiopacity, and the color change was great after mixing those materials.

  • PDF

Effect of thermocycling on shear bond strength and mode of failure of ceramic orthodontic brackets bonded to different porcelain restorations (수 종의 도재 수복물에 부착된 세라믹 브라켓의 전단접착강도와 파절양상에 열순환이 미치는 영향)

  • Kang, Sang-Wook;Son, Woo-Sung;Park, Soo-Byung;Kim, Seong-Sik
    • The korean journal of orthodontics
    • /
    • v.39 no.4
    • /
    • pp.225-233
    • /
    • 2009
  • Objective: The purpose of this study was to investigate the effect of thermocycling and type of porcelain restoration on shear bond strength (SBS) and mode of failure of monocrystalline ceramic brackets. Methods: A total of 60 porcelain discs were made and divided into three equal groups as follows: Ceramco 3, IPS Empress II, Zi-ceram/Vintage ZR. ceramic brackets were bonded to the prepared porcelain surfaces in the same manner. Each group was divided randomly into two subgroups: thermocycled group and non-thermocycled group (control). All samples were tested in shear mode on an universal testing machine. Results: SBS of the non-thermocycled group was clinically acceptable (Ceramco 3: $7.06\;{\pm}\;1.76\;MPa$, IPS Empress II: $7.55\;{\pm}\;2.38\;MPa$, Zi-ceram/Vintage ZR: $7.19\;{\pm}\;1.38\;MPa$). But, SBS of the thermocycled group was significantly reduced (Ceramco 3: $4.88\;{\pm}\;1.00\;MPa$, IPS Empress II: $5.46\;{\pm}\;1.35\;MPa$, Zi-ceram/Vintage ZR: $4.84\;{\pm}\;1.01\;MPa$, p < 0.05). There was no difference between the shear bond strength by type of porcelain restoration. All bonding failure occurred between bracket base and adhesive, except for 2 samples. Conclusions: The results of this study suggest that the type of porcelain restoration did not affect SBS, but thermocycling weakened SBS. Therefore, the effect of thermocycling should be considered when using ceramic brackets in practice.

Physical characteristics of ceramic/glass-polymer based CAD/CAM materials: Effect of finishing and polishing techniques

  • Ekici, Mugem Asli;Egilmez, Ferhan;Cekic-Nagas, Isil;Ergun, Gulfem
    • The Journal of Advanced Prosthodontics
    • /
    • v.11 no.2
    • /
    • pp.128-137
    • /
    • 2019
  • PURPOSE. The aim of this study was to compare the effect of different finishing and polishing techniques on water absorption, water solubility, and microhardness of ceramic or glass-polymer based computer-aided design and computer-aided manufacturing (CAD/CAM) materials following thermocycling. MATERIALS AND METHODS. 150 disc-shaped specimens were prepared from three different hybrid materials and divided into five subgroups according to the applied surface polishing techniques. All specimens were subjected up to #4000 grit SiC paper grinding. No additional polishing has been done to the control group (Group I). Other polishing procedures were as follows: Group II: two-stage diamond impregnated polishing discs; Group III: yellow colored rubber based silicone discs; Group IV: diamond polishing paste; and Group V: Aluminum oxide polishing discs. Subsequently, 5000-cycles of thermocycling were applied. The analyses were conducted after 24 hours, 7 days, and 30 days of water immersion. Water absorption and water solubility results were analyzed by two-way ANOVA and Tukey post-hoc tests. Besides, microhardness data were compared by Kruskal-Wallis and MannWhitney U tests (P<.05). RESULTS. Surface polishing procedures had significant effects on water absorption and solubility and surface microhardness of resin ceramics (P<.05). Group IV exhibited the lowest water absorption and the highest microhardness values (P<.05). Immersion periods had no effect on the microhardness of hybrid ceramic materials (P>.05). CONCLUSION. Surface finishing and polishing procedures might negatively affect physical properties of hybrid ceramic materials. Nevertheless, immersion periods do not affect the microhardness of the materials. Final polishing by using diamond polishing paste can be recommended for all CAD/CAM materials.

MICROLEAKAGE OF COMPOSITE RESIN RESTORATION ACCORDING TO THE NUMBER OF THERMOCYCLING (열순환 횟수에 따른 복합레진의 미세누출)

  • Kim, Chang-Youn;Shin, Dong-Hoon
    • Restorative Dentistry and Endodontics
    • /
    • v.32 no.4
    • /
    • pp.377-384
    • /
    • 2007
  • Present tooth bonding system can be categorized into total etching bonding system (TE) and self-etching boding system (SE) based on their way of smear layer treatment. The purposes of this study were to compare the effectiveness between these two systems and to evaluate the effect of number of themocycling on microleakage of class V composite resin restorations. Total forty class V cavities were prepared on the single-rooted bovine teeth and were randomly divided into four experimental groups: two kinds of bonding system and another two kinds of thermocycling groups. Half of the cavities were filed with Z250 following the use of TE system, Single Bond and another twenty cavities were filled with Metafil and AQ Bond, SE system. All composite restoratives were cured using light curing unit (XL2500, 3M ESPE, St. Paul, MN, USA) for 40 seconds with a light intensity of $600mW/cm^2$. Teeth were stored in distilled water for one day at room temperature and were finished and polished with Sof-Lex system. Half of teeth were thermocycled 500 times and the other half were thermocycled 5,000 times between $5^{\circ}C$ and $55^{\circ}C$ for 30 second at each temperature. Teeth were isolated with two layers of nail varnish except the restoration surface and 1 mm surrounding margins. Electrical conductivity (${\mu}A$) was recorded in distilled water by electrochemical method. Microleakage scores were compared and analyzed using two-way ANOVA at 95% level. From this study, following results were obtained: There was no interaction between variables of bonding system and number of thermocycling (p = 0.485). Microleakage was not affected by the number of thermocycling either (p = 0.814). However, Composite restoration of Metafil and AQ Bond, SE bond system showed less microleakage than composite restoration of Z250 and Single Bond, TE bond system (p = 0.005).

Effects of air-abrasion pressure on the resin bond strength to zirconia: a combined cyclic loading and thermocycling aging study

  • Al-Shehri, Eman Z.;Al-Zain, Afnan O.;Sabrah, Alaa H.;Al-Angari, Sarah S.;Dehailan, Laila Al;Eckert, George J.;Ozcan, Mutlu;Platt, Jeffrey A.;Bottino, Marco C.
    • Restorative Dentistry and Endodontics
    • /
    • v.42 no.3
    • /
    • pp.206-215
    • /
    • 2017
  • Objectives: To determine the combined effect of fatigue cyclic loading and thermocycling (CLTC) on the shear bond strength (SBS) of a resin cement to zirconia surfaces that were previously air-abraded with aluminum oxide ($Al_2O_3$) particles at different pressures. Materials and Methods: Seventy-two cuboid zirconia specimens were prepared and randomly assigned to 3 groups according to the air-abrasion pressures (1, 2, and 2.8 bar), and each group was further divided into 2 groups depending on aging parameters (n = 12). Panavia F 2.0 was placed on pre-conditioned zirconia surfaces, and SBS testing was performed either after 24 hours or 10,000 fatigue cycles (cyclic loading) and 5,000 thermocycles. Non-contact profilometry was used to measure surface roughness. Failure modes were evaluated under optical and scanning electron microscopy. The data were analyzed using 2-way analysis of variance and ${\chi}^2$ tests (${\alpha}=0.05$). Results: The 2.8 bar group showed significantly higher surface roughness compared to the 1 bar group (p < 0.05). The interaction between pressure and time/cycling was not significant on SBS, and pressure did not have a significant effect either. SBS was significantly higher (p = 0.006) for 24 hours storage compared to CLTC. The 2 bar-CLTC group presented significantly higher percentage of pre-test failure during fatigue compared to the other groups. Mixed-failure mode was more frequent than adhesive failure. Conclusions: CLTC significantly decreased the SBS values regardless of the air-abrasion pressure used.

Repair bond strength of resin composite to bilayer dental ceramics

  • Ataol, Ayse Seda;Ergun, Gulfem
    • The Journal of Advanced Prosthodontics
    • /
    • v.10 no.2
    • /
    • pp.101-112
    • /
    • 2018
  • PURPOSE. The purpose of this study was to investigate the effect of various surface treatments (ST) on the shear bond strength of resin composite to three bilayer dental ceramics made by CAD/CAM and two veneering ceramics. MATERIALS AND METHODS. Three different bilayer dental ceramics and two different veneering ceramics were used (Group A: IPS e.max CAD+IPS e.max Ceram; Group B: IPS e.max ZirCAD+IPS e.max Ceram, Group C: Vita Suprinity+Vita VM11; Group D: IPS e.max Ceram; Group E: Vita VM11). All groups were divided into eight subgroups according to the ST. Then, all test specimens were repaired with a nano hybrid resin composite. Half of the test specimens were subjected to thermocycling procedure and the other half was stored in distilled water at $37^{\circ}C$. Shear bond strength tests for all test specimens were carried out with a universal testing machine. RESULTS. There were statistically significant differences among the tested surface treatments within the all tested fracture types (P<.005). HF etching showed higher bond strength values in Groups A, C, D, and E than the other tested ST. However, bonding durability of all the surface-treated groups were similar after thermocycling (P>.00125). CONCLUSION. This study revealed that HF etching for glass ceramics and sandblasting for zirconia ceramics were adequate for repair of all ceramic restorations. The effect of ceramic type exposed on the fracture area was not significant on the repair bond strength of resin composites to different ceramic types.

Effect of an aluminum chloride hemostatic agent on the dentin shear bond strength of a universal adhesive

  • Sujin Kim;Yoorina Choi;Sujung Park
    • Restorative Dentistry and Endodontics
    • /
    • v.48 no.2
    • /
    • pp.14.1-14.11
    • /
    • 2023
  • Objectives: This study investigated the effect of an aluminum chloride hemostatic agent on the shear bond strength (SBS) of a universal adhesive to dentin. Materials and Methods: Eighty extracted human molars were trimmed at the occlusal dentin surfaces and divided mesiodistally. According to hemostatic agent application, specimens were randomly allocated into control (C) and hemostatic agent (Traxodent; H) groups. Each group was divided into 4 subgroups according to the adhesive system (n = 20): Scotchbond Multi-Purpose (SBER), Clearfil SE Bond (CLSE), All-Bond Universal etch-and-rinse mode (ALER), and All-Bond Universal self-etch mode (ALSE). SBS was measured for half of the specimens at 24 hours, and the other half were thermocycled in water baths (group T). Fracture surfaces were examined to determine the failure mode. The SBS was measured, and data were analyzed using 1-way analysis of variance, the Student's t-test, and the Tukey honestly significant difference test (p = 0.05). Results: No significant differences in SBS were found between groups C and H for any adhesive system at 24 hours. After thermocycling, a statistically significant difference was observed between CT+ALSE and HT+ALSE (p < 0.05). When All-Bond Universal was applied to hemostatic agent-contaminated dentin, the SBS of H+ALSE was significantly lower than that of H+ALER (p < 0.05). The SBER subgroups showed no significant differences in SBS regardless of treatment and thermocycling. Conclusions: When exposed dentin was contaminated by an aluminum chloride hemostatic agent before dentin adhesive treatment, application of All-Bond Universal in etch-and-rinse mode was superior to self-etch mode.

Comparison of Bonding Strength by Cleaning Method of Pediatric Zirconia Crown Contaminated with Saliva or Blood (타액 및 혈액오염 시 유치 지르코니아 기성관 내면의 세척 방법에 따른 결합강도의 비교)

  • Kim, Jaeyong;Park, Howon;Lee, Juhyun;Seo, Hyunwoo
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.45 no.2
    • /
    • pp.185-194
    • /
    • 2018
  • The objective of this study was to compare the shear bonding strength of zirconia after cleaning the crown contaminated by saliva or blood and determine the effect of thermocycling. 180 specimens were embedded in acrylic resin. 20 Specimens in the positive control group were bonded with resin cement without contamination. 20 Specimens in the negative control group were washed with water for 20 seconds and then dried for 10 seconds. 120 Specimens contaminated by saliva or blood were cleaned by using three cleaning methods: 37% phosphoric acid gel, commercial cleanse, and 2.5% NaOCl. All samples were bonded with resin cement and divided into two subgroups: One was not aged, and the other was tested with 30,000 thermocycling. In both groups contamination by saliva and blood, no statistically significant difference was not found in control, groups cleansed by commercial cleanser and 2.5% NaOCl. When the groups cleansed with water and 37% phosphate gel were compared with the control, significantly low shear bond strength was shown. Thermocycling group showed statistically significantly low shear bond stress compared to the groups without thermocycling. When zirconia was contaminated by saliva or blood, its original shear bond strength could be obtained if it was cleaned with commercial cleanser or 2.5% NaOCl.

Shear Bonding Strength of Three Cements Luted on Pediatric Zirconia Crowns and Dentin of Primary Teeth (3종 시멘트로 접착한 소아용 기성 지르코니아 전장관과 유치 상아질의 전단결합강도)

  • Lee, Jeongeun;Park, Howon;Lee, Juhyun;Seo, Hyunwoo
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.45 no.3
    • /
    • pp.314-323
    • /
    • 2018
  • The aim of this study was to evaluate the shear bond strength of three luting cements and to identify the effect of thermocycling. Zirconia discs were made similar to the inner surface of a preformed pediatric zirconia crown ($NuSmile^{(R)}$ ZR crown: ZRCr). The similarity between the zirconia discs and the inner surface of a ZRCr was confirmed by scanning electron microscope. Three luting cements were $Ketac^{TM}$ Cem Permanent Glass Ionomer Luting Cement (KGI), $RelyX^{TM}$ Luting Plus Cement (RLP), $RelyX^{TM}$ Unicem Self-Adhesive Universal Resin Cement (RUR). Three luting cements were bonded according to the manufacturer's instructions for 60 zirconia discs and 60 dentin of primary teeth. Total of 120 specimens were divided into two subgroups: One was not aged, and the other was tested with 5500 thermocycling. Shear bond strength was measured using a universal testing machine, and the fracture patterns were observed with SEM. On the zirconia discs and the dentin of primary teeth, shear bond strength of RUR was higher than that of KGI and RLP, and there were statistically significant differences by cement type. The shear bond strength differences for RUR were not statistically significant depending on thermocycling.