• Title/Summary/Keyword: Thermal-structure Stability

Search Result 650, Processing Time 0.032 seconds

Thermal Stable Ni-silicide Utilizing Pd Stacked Layer for nano-scale CMOSFETs (나노급 CMOSFET을 위한 Pd 적층구조를 갖는 열안정 높은 Ni-silicide)

  • Yu, Ji-Won;Zhang, Ying-Ying;Park, Kee-Young;Li, Shi-Guang;Zhong, Zhun;Jung, Soon-Yen;Yim, Kyoung-Yean;Lee, Ga-Won;Wang, Jin-Suk;Lee, Hi-Deok
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.10-10
    • /
    • 2008
  • Silicide is inevitable for CMOSFETs to reduce RC delay by reducing the sheet resistance of gate and source/drain regions. Ni-silicide is a promising material which can be used for the 65nm CMOS technologies. Ni-silicide was proposed in order to make up for the weak points of Co-silicide and Ti-silicide, such as the high consumption of silicon and the line width limitation. Low resistivity NiSi can be formed at low temperature ($\sim500^{\circ}C$) with only one-step heat treat. Ni silicide also has less dependence of sheet resistance on line width and less consumption of silicon because of low resistivity NiSi phase. However, the low thermal stability of the Ni-silicide is a major problem for the post process implementation, such as metalization or ILD(inter layer dielectric) process, that is, it is crucial to prevent both the agglomeration of mono-silicide and its transformation into $NiSi_2$. To solve the thermal immune problem of Ni-silicide, various studies, such as capping layer and inter layer, have been worked. In this paper, the Ni-silicide utilizing Pd stacked layer (Pd/Ni/TiN) was studied for highly thermal immune nano-scale CMOSFETs technology. The proposed structure was compared with NiITiN structure and showed much better thermal stability than Ni/TiN.

  • PDF

Thermal Flutter Analysis of Spacecraft Solar Array Structure (위성체 태양전지판 구조물의 열적 플러터 해석)

  • Yoon, Il-Soung;Kang, Ho-Shik;Jeong, Nam-Heui;Song, Oh-Seop
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.7
    • /
    • pp.26-32
    • /
    • 2005
  • In this paper, the vibration response of the spacecraft solar array is investigated. The solar array model consists of composite thin walled beam and solar blanket, spreader bar. The composite thin walled beam incorporates a number of nonclassical effects of transverse shear, primary and secondary warping, rotary inertia and anisotropy of constituent materials. The solar blanket is a membrane subjected to uniform tension in the z direction. The spreader bar is a rigid member. A coupled thermal structure analysis that includes the effects of structural deformations on heating and temperature gradient is investigated. A stability criterion given in parameters for establishes the conditions for thermal flutter.

Thermal Properties and Water Sorption Behaviors of Epoxy and Bismaleimide Composites

  • Seo, Jong-Chul;Jang, Won-Bong;Han, Hak-Soo
    • Macromolecular Research
    • /
    • v.15 no.1
    • /
    • pp.10-16
    • /
    • 2007
  • In this work, we prepared epoxy/BMI composites by using N,N'-bismaleimide-4,4'-diphenylmethane (BMI), epoxy resin (diglycidyl ether of bisphenol-A (DGEBA)), and 4,4'-diamino diphenyl methane (DDM). The thermal properties and water sorption behaviors of the epoxy and BMI composites were investigated. For the epoxy/BMI composites, the glass transition and decomposition temperatures both increased with increasing BMI addition, which indicates the effect of BMI addition on improved thermal stability. The water sorption behaviors were gravi-metrically measured as a function of humidity, temperature, and composition. The diffusion coefficient and water uptake decreased and the activation energy for water diffusion increased with increasing BMI content, indicating that the water sorption in epoxy resin, which causes reliability problems in electronic devices, can be diminished by BMI addition. The water sorption behaviors in the epoxy/BMI composites were interpreted in terms of their chemical and morphological structures.

Thermal Buckling Characteristics of Composite Conical Shell Structures

  • Woo, Ji-Hye;Rho, Jin-Ho;Lee, In
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.8 no.2
    • /
    • pp.82-88
    • /
    • 2007
  • Thermal Buckling and free vibration analyses of multi-layered composite conical shells based on a layerwise displacement theory are performed. The Donnell's displacement-strain relationships of conical shell structure are applied. The natural frequencies are compared with the ones existing in the previous literature for laminated conical shells with several cone semi-vertex angles. Moreover, the thermal buckling behaviors of the laminated conical shell are investigated to consider the effect of the semi-vertex angle, subtended angle, and radius to thickness ratio on the structural stability.

A Study on the Experimental Design of Tail stock with Consideration Thermal Expansion (열팽창을 고려한 심압대의 실험적 설계에 관한 연구)

  • 김경석
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.3
    • /
    • pp.123-129
    • /
    • 2000
  • To make high accuracy cutting of long materials and a piston for the engines it must be necessary to keep the thermal stability of spindle and tail stock in CNC lathe. If a object is clamped at the ends the thermal expansion and cutting process generate the deflection of cutting objects. Especially in the case of a piston ring piston ovality and piston profile the influences of deflection are very serious. In order to solve the problems most of piston cutting are worked under simply support. However the prob-lems exist yet. Therefore this paper proposes the new structure of tail stock which can compensates the deflection.

  • PDF

The study on dielectric properties of $Ta_2O_5$ thin films obtained by thermal oxidation (Thermal Oxidation 법으로 제조된 $Ta_2O_5$ 박막의 유전체 물성에 관한 연구)

  • Kim, I.S.;Kim, H.J.;Min, B.K.;Song, J.S.
    • Proceedings of the KIEE Conference
    • /
    • 2002.07c
    • /
    • pp.1473-1475
    • /
    • 2002
  • This study presents the dielectric properties of $Ta_2O_5$ MIM capacitor structure processed by thermal oxidation. The AES(auger electron emission) depth profile showed thermal oxidation effect gives rise to the $O_2$ deficiened into the new layer. The leakage current density respectively, at $1{\sim}3{\times}10^{-3}$(kV/cm) were $3{\times}10^{-4}-10^{-8}(A/cm^2)$. Leakage current density behavior is stable irrespective of applied electric field, the frequency va capacitance characteristic enhanced stability. The capacitance vs voltage measurement that, $V_{fb}$(flat-band voltage) was increase dependance on the thin films thickness, it is changed negative to positive.

  • PDF

Characterization and processing of Biodegradable polymer blends of poly(lactic acid) with poly(butylene succinate adipate)

  • Lee, Sang-Mook;Lee, Jae-Wook
    • Korea-Australia Rheology Journal
    • /
    • v.17 no.2
    • /
    • pp.71-77
    • /
    • 2005
  • We investigated thermal, rheological, morphological and mechanical properties of a binary blend of poly(lactic acid) (PLA) and poly(butylene succinate adipate) (PBSA). The blends were extruded and their molded properties were examined. DSC thermograms of blends indicated that the thermal properties of PLA did not change noticeably with the amount of PBSA, but thermogravimetric analysis showed that thermal stability of the blends was lower than that of pure PLA and PBSA. Immiscibility was checked with thermal data. The rheological properties of the blends changed remarkably with composition. The tensile strength and modulus of blends decreased with PBSA content. Interestingly, however, the impact strength of PLA/PBSA (80/20) blend was seriously increased higher than the rule of mixture. Morphology of the blends showed a typical sea and island structure of immiscible blend. The effect of the blend composition on the biodegradation was also investigated. In the early stage of the degradation test, the highest rate was observed for the blend containing $80wt\%$ PBSA.

Application of Hyperbolic Two-fluids Equations to Reactor Safety Code

  • Hogon Lim;Lee, Unchul;Kim, Kyungdoo;Lee, Won-Jae
    • Nuclear Engineering and Technology
    • /
    • v.35 no.1
    • /
    • pp.45-54
    • /
    • 2003
  • A hyperbolic two-phase, two-fluid equation system developed in the previous work has been implemented in an existing nuclear safety analysis code, MARS. Although the implicit treatment of interfacial pressure force term introduced in momentum equation of the hyperbolic equation system is required to enhance the numerical stability, it is very difficult to implement in the code because it is not possible to maintain the existing numerical solution structure. As an alternative, two-step approach with stabilizer momentum equations has been selected. The results of a linear stability analysis by Von-Neumann method show the equivalent stability improvement with fully-implicit solution method. To illustrate the applicability, the new solution scheme has been implemented into the best-estimate thermal-hydraulic analysis code, MARS. This paper also includes the comparisons of the simulation results for the perturbation propagation and water faucet problems using both two-step method and the original solution scheme.

Thermal Stability Test Evaluation of Applying the Artificial-Crack of Water-Leakage Repair Materials Used in the Maintenance of Concrete Structure (콘크리트 구조물의 유지보수에 사용되는 누수보수재료의 인공 균열을 이용한 온도 안정성 시험평가)

  • Kim, Soo-Youn;Kim, Byoung-ll;Oh, Sang-Keun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.3
    • /
    • pp.322-329
    • /
    • 2016
  • This study is about the method to control the quality of material used to repair leakage and crack of concrete structure and suggests the "Temperature Stability Test Method" as a follow-up study. In the result of performance evaluation for 45 samples of 15 types in 5 series, the temperature stability test showed different material changes including rolling down, volume change, and color change as they are frozen and melt repeatedly in the somewhat extreme conditions at low($-20^{\circ}C$) and high($60^{\circ}C$) temperatures, where 13 samples (approx. 29%) and 32 samples (approx. 71%) showed leakage, respectively, in the permeability test to evaluate leakage. This result shows the enough importance of setting the quality control criteria of leakage repair material currently used to maintain concrete structures considering the temperature conditions, and proves the applicability of the Temperature Stability Test Method as a standard test method to ensure long-term durability of concrete structure.

Characteristics of Magnetic Tunnel Junctions Incorporating Nano-Oxide Layers (나노 산화층을 사용한 자기터널접합의 특성)

  • Chu, In-Chang;Chun, Byong-Sun;Song, Min-Sung;Lee, Seong-Rae;Kim, Young-Keun
    • Journal of the Korean Magnetics Society
    • /
    • v.16 no.2
    • /
    • pp.136-139
    • /
    • 2006
  • The tunneling magnetoresistance (TMR) ratios of magnetic tunnel junctions (MTJs), in general, decrease abruptly above 250$^{\circ}C$ due to Mn interdiffusion from an antiferromagnet IrMn layer to a ferromagnetic CoFe and/or a tunnel barrier. To improve thermal stability, we prepared MTJs with nano-oxide layers. Using a MTJ structure consisting of underlayer CoNbZr 4/bufferlayer CoFe 10/antiferromaget IrMn 7.5/pinned layer CoFe 3/tunnel barrier AlO/freelayer CoFe 3/capping CoNbZr 2 (nm), we placed a nano-oxide layer (NOL) into the underlayer or bufferlayer. Then, the thermal, structural and magneto-electric properties were measured. The TMR ratio, surface flatness, and thermal stability of the MTJs with NOLs were promoted.