• Title/Summary/Keyword: Thermal-Mechanical Behavior

Search Result 986, Processing Time 0.025 seconds

Thermal Elasto-Plastic Deformation Analysis of Metal Matrix Composites Considering Residual Stress and Interface Bonding Strength (잔류응력과 계면접합강도를 고려한 금속복합재료의 열탄소성 변형 해석)

  • Kang, Chung-Gil;Seo, Young-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.1 s.94
    • /
    • pp.227-237
    • /
    • 1999
  • As the interface bonding phenomenon between the matrix and the reinforcements has a large effect on the mechanical properties of MMCs, a sugestion of the strength analysis technique considering the residual stress and the interface bonding phenomenon is very important for the design of pans and the estimation of fatigue behavior. In this paper the three dimensional finite element anaysis is performed during the elasto-plastic deformation of the particulate reinforced metal matrix composites. It was analyzed with the volume fractions in view of microscale. Bonding strength. interface separation and matrix void growth between the matrix and the reinforcements will be predicted on deformation under tensile loading. An interface seperation is estimated by the fracture criterion which is a critical value of generalized plastic work per unit volume. The shape of the reinforcement is assumed to be a perfect sphere. And the type of the reinforcement distribution is assumed as FCC array. The thermal residual stress in MMCs is induced by the heat treatment. It is included at the simulation as an initial residual stress. The element birth and death method of the ANSYS program is used for the estimation of the interface bonding strength, void generation and propagation. It is assumed that the fracture in the matrix region begin to occur under the external loading when the plastic work per unit volume is equal to the critical value. The fracture strain will be defined. The experimental data of the extruded $SiC_p$>/606l Al composites are compared with the theoretical results.

  • PDF

Studies on Rheological Properties and Cure Behaviors of Difunctional Epoxy/Biodegradable Poly(butylene succinate) Blends (2관능성 에폭시/생분해성 폴리부틸렌 숙시네이트 블렌드의 유변학적 특성 및 경화거동에 관한 연구)

  • 박수진;김승학;이재락;민병각
    • Composites Research
    • /
    • v.15 no.6
    • /
    • pp.8-15
    • /
    • 2002
  • In this work, the effect of biodegradable poly(butylene succinate)(PBS) in difunctional epoxy(21:P) resin was investigated in terms of rheological properties, cure kinetics, thermal stabilities, and mechanical interfacial properties. Rheological properties of the blend system were measured under isothermal condition using a rheometer. Cross-linking activation energies($\textrm{E}_c$) were determined from the Arrhenius equation based on gel time and curing temperature. The $\textrm{E}_c$ was increased in the presence of 10 wt% PBS as compared with neat 2EP. From the DSC results of the blends, the cure activation energies($\textrm{E}_a$) showed a similar behavior with $\textrm{E}_c$ due to the increased intermolecular interaction between 2EP and PBS. The decomposed activation energies($\textrm{E}_t$) for the thermal stability derived from the integral method of Horowitz-Metzger equation, were also increased in 10 wt% PBS. In addition, 20 wt% PBS showed the highest critical stress intensity factor($\textrm{E}_{IC}$). which was explained by increasing the fracture toughness of the 2EP/PBS blend systems.

Densification and Properties of ZrB2-based Ceramics for Ultra-high Temperature Applications (초고온용 ZrB2-계 세라믹스의 치밀화와 물성)

  • Kim, Seong-Won;Kim, Hyung-Tae;Kim, Kyung-Ja;Seo, Won-Seon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.3
    • /
    • pp.273-278
    • /
    • 2012
  • $ZrB_2$ has a melting temperature of $3245^{\circ}C$ and a low density of $6.1\;g/cm^3$, which makes this a candidate for application to ultra-high temperature over $2000^{\circ}C$. Beside these properties, $ZrB_2$ has excellent resistance to thermal shock and oxidation compared with other non-oxide engineering ceramics. This paper reviewed briefly 2 research examples, which are related to densification and properties of $ZrB_2$-based ceramics for ultra-high temperature applications. In the first section, the effect of $B_4C$ addition on the densification and properties of $ZrB_2$-based ceramics is shown. $ZrB_2$-20 vol.% SiC system was selected as a basic composition and $B_4C$ or C was added to this system in some extents. With sintered bodies, densification behavior and hightemperature (up to $1400^{\circ}C$) properties such as bending strength and hardness are examined. In the second section, the effect of the SiC size on the microstructures and physical properties is shown. $ZrB_2$-SiC ceramics are fabricated by using various SiC sources in order to investigate the grain-growth inhibition and the mechanical/thermal properties of $ZrB_2$-SiC.

Effect of Tip Gap Height on Heat/Mass Transfer over a Cavity Squealer Tip (팁간극높이가 전면스퀼러팁 표면의 열전달 특성에 미치는 영향)

  • Kang, Dong Bum;Moon, Hyun Suk;Lee, Sang Woo
    • The KSFM Journal of Fluid Machinery
    • /
    • v.16 no.6
    • /
    • pp.19-25
    • /
    • 2013
  • The effect of tip gap height on heat/mass transfer characteristics on the floor of cavity squealer tip has been investigated in a turbine cascade for power generation by employing the naphthalene sublimation technique. The squealer rim height is chosen to be an optimal one of $h_{st}/c$ = 5.51% for the tip gap height-to-chord ratios of h/c = 1.0, 2.0, 3.0 and 4.0%. The results show that heat transfer on the cavity floor is strongly dependent upon the behavior of the cavity flow falling down onto the floor. For lower h/c, the floor heat transfer is influenced by the tip leakage flow falling down along the inner face of the suction-side squealer, whereas the floor heat transfer for higher h/c is augmented mainly due to the impingement of leakage flow on the floor near the leading edge. Compared to the plane tip surface heat transfer, the cavity floor heat transfer is less influenced by h/c. For h/c = 1.0%, the average thermal load is as low as a half of the plane tip surface one, and the difference in the thermal load between the two cases tends to decrease with increasing h/c.

Reliable Anisotropic Conductive Adhesives Flip Chip on Organic Substrates For High Frequency Applications

  • Paik, Kyung-Wook;Yim, Myung-Jin;Kwon, Woon-Seong
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2001.04a
    • /
    • pp.35-43
    • /
    • 2001
  • Flip chip assembly on organic substrates using ACAs have received much attentions due to many advantages such as easier processing, good electrical performance, lower cost, and low temperature processing compatible with organic substrates. ACAs are generally composed of epoxy polymer resin and small amount of conductive fillers (less than 10 wt.%). As a result, ACAs have almost the same CTE values as an epoxy material itself which are higher than conventional underfill materials which contains lots of fillers. Therefore, it is necessary to lower the CTE value of ACAs to obtain more reliable flip chip assembly on organic substrates using ACAs. To modify the ACA composite materials with some amount of conductive fillers, non-conductive fillers were incorporated into ACAs. In this paper, we investigated the effect of fillers on the thermo-mechanical properties of modified ACA composite materials and the reliability of flip chip assembly on organic substrates using modified ACA composite materials. Contact resistance changes were measured during reliability tests such as thermal cycling, high humidity and temperature, and high temperature at dry condition. It was observed that reliability results were significantly affected by CTEs of ACA materials especially at the thermal cycling test. Results showed that flip chip assembly using modified ACA composites with lower CTEs and higher modulus by loading non-conducting fillers exhibited better contact resistance behavior than conventional ACAs without non-conducting fillers. Microwave model and high-frequency measurement of the ACF flip-chip interconnection was investigated using a microwave network analysis. ACF flip chip interconnection has only below 0.1nH, and very stable up to 13 GHz. Over the 13 GHz, there was significant loss because of epoxy capacitance of ACF. However, the addition of $SiO_2filler$ to the ACF lowered the dielectric constant of the ACF materials resulting in an increase of resonance frequency up to 15 GHz. Our results indicate that the electrical performance of ACF combined with electroless Wi/Au bump interconnection is comparable to that of solder joint.

  • PDF

Study on the single bubble growth at saturated pool boiling (포화상태 풀비등시 단일기포의 성장에 관한 연구)

  • Kim, Jeong-Bae;Lee, Han-Choon;Oh, Byung-Do;Kim, Moo-Hwan
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1933-1938
    • /
    • 2004
  • Nucleate boiling experiments with constant wall temperature of heating surface were performed using R113 for almost saturated pool boiling conditions. A microscale heater array and Wheatstone bridge circuits were used to maintain a constant wall temperature condition and to measure the heat flow rate with high temporal and spatial resolutions. Bubble images during the bubble growth were taken as 5000 frames a sec using a high-speed CCD camera synchronized with the heat flow rate measurements. The geometry of the bubble during growth time could be obtained from the captured bubble images. The bubble growth behavior was analyzed using the new dimensionless parameters for each growth regions to permit comparisons with previous results at the same scale. We found that the new dimensionless parameters can describe the whole growth region as initial and later respectively. The comparisons showed good agreement in the initial and thermal growth regions. The required heat flow rate for the volume change of the observed bubble was estimated to be larger than the instantaneous heat flow rate measured at the wall. Heat, which is different from the instantaneous heat supplied through the heating wall, can be estimated as being transferred through the interface between bubble and liquid even with saturated pool conditions. This phenomenon under a saturated pool condition needs to be analyzed and the data from this study can supply the good experimental data with the precise boundary condition (constant wall temperature).

  • PDF

Cure Behaviors and Mechanical Interfacial Properties of Epoxy/Polyurethane Blends Initiated by Latent Thermal Catalyst (열잠재성 개시제에 의한 에폭시/폴리우레탄 블렌드의 경화거동 및 파괴인성)

  • Park, Soo-Jin;Seok, Su-Ja;Kang, Jun-Gil;Kwon, Soo-Han
    • Elastomers and Composites
    • /
    • v.39 no.1
    • /
    • pp.42-50
    • /
    • 2004
  • In this work, the diglycidylether of bisphenol A (DGEBA) and modified polyurethane (PU) blends were initiated by N-benzylpyrazinium hexafluoroantimonate (BPH). The cure and fracture toughness of neat DGEBA with the addition of PU were investigated. The cure properties of DGEBA/PU blend system were examined by DSC and near-IR measurements. The fracture touhtness were investigated by measuring the critical stress intensity factor ($K_{IC}$) and the critical strain energy release rate ($G_{IC}$). According to the results, the maximum values of owe activation energy ($E_a$) and conversion (${\alpha}$) were found at 10 phr of PU. Also the $K_{IC}$ showed a similar behavior with the results of conversion. These results were probably due to increase of crosslinking density in the blends resulted from increase of the hydrogen bonding between the hydroxyl groups of DGEBA and isocyanate groups of PU.

The Prediction of Nonlinear behavior of Double Coil Shape Memory Alloy Spring (이중 나선 구조 형상기억합금 스프링 거동 예측)

  • Lee, Jong-Gu;Ahn, Sung-Min;Cho, Kyu-Jin;Cho, Maenghyo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.4
    • /
    • pp.347-354
    • /
    • 2012
  • The recovery force and displacement occur due to the phase transformation from the martensite phase to the austenite phase induced by the mechanical loading or thermal loading. These recovery force and displacement depend on an initial geometrical configuration of SMAs and loading conditions. Although the SMAs generally generates large recovery forces, the sufficient recovery displacement cannot be expected without a proper design strategy. The functionality of SMAs is limited due to the unbalance between the large recovery force and the small recovery displacement. This study suggests the double coil SMA spring in order to amplifying the recovery displacement induced by the phase transformation. By predicting the recovery displacement of doble coil SMA springs and one coil SMA springs induced by thermal loading, we show that the double coil SMA spring not only mitigate the unbalance of performance but also have a large recovery displacement for its recovery force than one coil SMA spring.

Material Integrity Assessment for a Ni Electrodeposit inside a Tube

  • Kim, Dong-Jin;Kim, Myong Jin;Kim, Joung Soo;Kim, Hong Pyo
    • Corrosion Science and Technology
    • /
    • v.6 no.5
    • /
    • pp.233-238
    • /
    • 2007
  • Due to the occasional occurrence of a localizedcorrosion such as a SCC and pitting in steam generator tubing(Alloy 600), leading to a significant economical loss, an effective repair technology is needed. For a successful electrodeposition inside a tube, many processes should be developed. Among these processes, an anode to be installed inside a tube, a degreasing condition to remove any dirt and grease, an activation condition for a surface oxide elimination, a strike layer forming condition which needs to be adhered tightly between an electroforming layer and a parent tube and a condition for an electroforming layer should be established. Through a combination of these various process condition parameters, the desired material properties can be acquired. Among these process parameters, various material properties including a mechanical property and its variation along with the height of the electrodeposit inside a tube as well as its thermal stability and SCC resistance should be assessed for an application in a plant. This work deals with the material properties of the Ni electrodeposits formed inside a tube by using the anode developed in this study such as the current efficiency, hardness, tensile property, thermal stability and SCC behavior of the electrodeposit in a 40wt% NaOH solution at $315^{\circ}C$. It was found that a variation of the material properties within the entire length of the electrodeposit was quite acceptable and the Ni electrodeposit showed an excellent SCC resistance.

Influence of the preparation design and artificial aging on the fracture resistance of monolithic zirconia crowns

  • Mitov, Gergo;Anastassova-Yoshida, Yana;Nothdurft, Frank Phillip;See, Constantin von;Pospiech, Peter
    • The Journal of Advanced Prosthodontics
    • /
    • v.8 no.1
    • /
    • pp.30-36
    • /
    • 2016
  • PURPOSE. The aim of this study was to evaluate the fracture resistance and fracture behavior of monolithic zirconia crowns in accordance with the preparation design and aging simulation method. MATERIALS AND METHODS. An upper first molar was prepared sequentially with three different preparation designs: shoulderless preparation, 0.4 mm chamfer and 0.8 mm chamfer preparation. For each preparation design, 30 monolithic zirconia crowns were fabricated. After cementation on Cr-Co alloy dies, the following artificial aging procedures were performed: (1) thermal cycling and mechanical loading (TCML): 5000 cycles of thermal cycling $5^{\circ}C-55^{\circ}C$ and chewing simulation (1,200,000 cycles, 50 N); (2) Low Temperature Degradation simulation (LTD): autoclave treatment at $137^{\circ}C$, 2 bar for 3 hours and chewing simulation; and (3) no pre-treatment (control group). After artificial aging, the crowns were loaded until fracture. RESULTS. The mean values of fracture resistance varied between 3414 N (LTD; 0.8 mm chamfer preparation) and 5712 N (control group; shoulderless preparation). Two-way ANOVA analysis showed a significantly higher fracture loads for the shoulderless preparation, whereas no difference was found between the chamfer preparations. In contrast to TCML, after LTD simulation the fracture strength of monolithic zirconia crowns decreased significantly. CONCLUSION. The monolithic crowns tested in this study showed generally high fracture load values. Preparation design and LTD simulation had a significant influence on the fracture strength of monolithic zirconia crowns.