DOI QR코드

DOI QR Code

The Prediction of Nonlinear behavior of Double Coil Shape Memory Alloy Spring

이중 나선 구조 형상기억합금 스프링 거동 예측

  • 이종구 (서울대학교 기계항공공학부) ;
  • 안성민 (서울대학교 기계항공공학부) ;
  • 조규진 (서울대학교 기계항공공학부) ;
  • 조맹효 (서울대학교 기계항공공학부)
  • Received : 2012.07.02
  • Accepted : 2012.07.19
  • Published : 2012.08.31

Abstract

The recovery force and displacement occur due to the phase transformation from the martensite phase to the austenite phase induced by the mechanical loading or thermal loading. These recovery force and displacement depend on an initial geometrical configuration of SMAs and loading conditions. Although the SMAs generally generates large recovery forces, the sufficient recovery displacement cannot be expected without a proper design strategy. The functionality of SMAs is limited due to the unbalance between the large recovery force and the small recovery displacement. This study suggests the double coil SMA spring in order to amplifying the recovery displacement induced by the phase transformation. By predicting the recovery displacement of doble coil SMA springs and one coil SMA springs induced by thermal loading, we show that the double coil SMA spring not only mitigate the unbalance of performance but also have a large recovery displacement for its recovery force than one coil SMA spring.

형상기억합금의 복원력 및 복원량은 열 하중 및 기계적 하중으로 인한 마르텐사이트 상에서 오스테나이트 상으로의 상변이에 의한 상변형률 발생에 기인한다. 복원력 및 복원량은 초기 형상 및 하중 부여 방식에 따라 차이가 발생하는데 적절한 설계 전략없이 상변형률에만 의지한 경우 큰 복원력은 발생할 수 있어도 큰 복원량을 기대하기는 어렵다. 이는 형상기억합금의 큰 복원력과 작은 복원량 간의 비대칭성에 기인하며 형상기억합금의 효율적인 이용에 걸림돌이 된다. 본 연구에서는 형상기억합금의 상변이로 발생하는 복원량을 극대화하는 방안으로 형상기억합금 선이 이중으로 감겨있는 이중 나선 구조 형상기억합금 스프링을 제안한다. 그리고 열 하중에 의해 발생하는 복원량을 예측하고 단일 나선 구조 형상기억합금 스프링과 비교 분석하여 이중 나선 구조 형상기억합금 스프링이 단일 나선 구조 형상기억합금 스프링보다 성능 비대칭성을 보다 완화시킬 뿐만 아니라 복원력 대비보다 큰 복원량을 가짐을 보였다.

Keywords

References

  1. Benard, W.L., Kahn, H., Heuer, A.H., Huff, M.A. (1997) A Titanium-Nikel Shape Memory Alloy Actuated Micropump, Solid State Sensors and Actuators, TRANSDUCERS '97 Chicago, 1(1), pp.361-364.
  2. Bergamasco, M., Salsedo, F., Dario, P. (1989) A Linear SMA Motor as Direct-Drive Robotic Actuator, Robotics and Automation, Proceedings., 1989 IEEE International Conference on, 1, pp.618-623.
  3. Bergamasco, M., Salsedo, F., Dario, P. (1989) Shape Memory Alloy Micromotors for Direct-Drive Actuation of Dexterous Artificial Hands, Sensors and Actuators, 17, pp.115-119. https://doi.org/10.1016/0250-6874(89)80071-X
  4. Boyd, J. G., Lagoudas, D. C., (1996). A Thermodynamical Constitutive Model for Shape Memory Materials, Part I. The Monolithic Shape Memory Alloy, Int. J. Plasticity 12, pp.805-842. https://doi.org/10.1016/S0749-6419(96)00030-7
  5. Buehler, J., Wang, F.E. (1967) A Summary of Recent Research on the Nitinol Alloys and Their Potential Application in Ocean Engineering, The IEEE Journal of Oceanic Engineering, 1, pp.105-120.
  6. Chang, L.C., Read, T.A. (1951) Plastic Deformation and Diffusionless Phase Change in Metal; The Gold-Cadmium Beta Phase, Transactions of the American Institute of Mechanical Engineers, 191, pp.47.
  7. Chen, C.H., Zheng, R.T., Kung, T.T, Shauo, C.N, Shy, H.J (2009) A Strain-Fiber Actuator by use of Shape Memory Alloy Spring, International Journal for Light and Electron Optics, 120(16), pp.818- 823. https://doi.org/10.1016/j.ijleo.2008.03.021
  8. Deborah, S.L., Robert, M.F., Arkadi, G., Sigmund, E., Arvin, P., Andre, B., Geraldine, K., Charles, S., Itzak V. (1988) A New Intratracheal Stent for Tracheobronchial Reconstruction: Experimental and Clinical Studies, Journal of Pediatric Surgery, 23(12), pp.1173-1177. https://doi.org/10.1016/S0022-3468(88)80336-1
  9. Greninger, A.B., Mooradian, V.G. (1938) Strain Transformation in Metastable Beta Cooper-Zinc and Beta Copper-Ti Alloys, Transactions of the American Institute of Mechanical Engineers, 128, pp.337-369.
  10. Johnson, A.D., Busch, J.D., Curtis, R,A., Charlse, S. (1992) Fabrication of Silicon-Based Shape Memory Alloy Microactuators, Mat. Res. Soc. Symp. Proc, 1992, 276.
  11. Khan, M.M., Lagoudas, D.C., Mayes, J.J., Henderson, B.K. (2004) Pseudoelastic SMA Spring Elements for Passive Vibration Isolation, Journal of Intelligent Material Systems and Structures, 16(6), pp.415-441.
  12. Kim, S.W., Koh, J.S., Cho, M., Cho, K.J. (2010) Towards a Bio-Mimetic Flytrap Robot Based on a Snap-Through Mechanism, Biomedical Robotics and Biomechatronics, 2010 3rd IEEE RAS and EMBS International Conference on, pp.534-539.
  13. Kohl, M., Krevet, B., Just, E. (2002) SMA Microgripper System, Sensors and Actuators A: Physical, 97-98, pp.646-652. https://doi.org/10.1016/S0924-4247(01)00803-2
  14. Kurdjumov, G.V., Khandros, L.G. (1949) About a Thermoelastic Balance in Martensite Transformations, Academy Science of the Union of Soviet Socialist Republics, 66, pp.211-215.
  15. Lee, H.J., Lee, J.J., Huh, J.S. (1999) A Simulation Study on the Thermal Buckling Behavior of Laminated Composite Shells with Embedded Shape Memory Alloy (SMA) Wires, Composite Structures, London, 47, pp.463-469. https://doi.org/10.1016/S0263-8223(00)00020-9
  16. Maenghyo, Cho., Sanghaun, Kim, (2005). Structural Morphing Using Two-Way Shape Memory Effect of SMA, International Journal of Solids and Structures, 42(5), pp.1759-1776. https://doi.org/10.1016/j.ijsolstr.2004.07.010
  17. Mori, K., Okamoto, S. (1995) A New Self-Expansive Intraurethral Stent Using Shape Memory Alloy: A Preliminary Report of its Availability, Urology, 45(1), pp.165-170. https://doi.org/10.1016/S0090-4295(95)97870-4
  18. Qidawai, M. A., Lagoudas, D.C., (2000). Numerical Implementaion of s Shape Memory Thermomechanical Constitutive Model Using Return Mapping Algorithms, Int. J. Numer. Methods Eng, 47, pp.1123-1168. https://doi.org/10.1002/(SICI)1097-0207(20000228)47:6<1123::AID-NME817>3.0.CO;2-N
  19. Raymond, L.O, Alfred, G, Ralph, H. (1958) Heats of Formation of ${\alpha}$-Phase Silver-Cadmium Alloys, Journal of Physical Chemistry, 62, pp.325-326. https://doi.org/10.1021/j150561a019
  20. Sanghaun, Kim., Maenghyo, Cho. (2007). Numerical Simulation of a Double SMA wire Actuator Using the Two-Way Shape Memory Effect of SMA, Smart Mater. Struct., 16, pp.372-381 https://doi.org/10.1088/0964-1726/16/2/016
  21. Sanghaun, Kim., Maenghyo, Cho., (2010). A Simple Smart Wing Actuator Using Ni-Ti SMA, Journal of Mechanical Science and Technology, 24(9), pp.1865-1873. https://doi.org/10.1007/s12206-010-0609-8
  22. Toi, Y., Lee, J.B.., Taya, M. (2004) Finite Element Analysis of Superelastic, Large Deformation Behavior of Shape Memory Alloy Helical Springs, Computers and structures, 82, pp.1685-1693. https://doi.org/10.1016/j.compstruc.2004.03.025