Browse > Article
http://dx.doi.org/10.7734/COSEIK.2012.25.4.347

The Prediction of Nonlinear behavior of Double Coil Shape Memory Alloy Spring  

Lee, Jong-Gu (서울대학교 기계항공공학부)
Ahn, Sung-Min (서울대학교 기계항공공학부)
Cho, Kyu-Jin (서울대학교 기계항공공학부)
Cho, Maenghyo (서울대학교 기계항공공학부)
Publication Information
Journal of the Computational Structural Engineering Institute of Korea / v.25, no.4, 2012 , pp. 347-354 More about this Journal
Abstract
The recovery force and displacement occur due to the phase transformation from the martensite phase to the austenite phase induced by the mechanical loading or thermal loading. These recovery force and displacement depend on an initial geometrical configuration of SMAs and loading conditions. Although the SMAs generally generates large recovery forces, the sufficient recovery displacement cannot be expected without a proper design strategy. The functionality of SMAs is limited due to the unbalance between the large recovery force and the small recovery displacement. This study suggests the double coil SMA spring in order to amplifying the recovery displacement induced by the phase transformation. By predicting the recovery displacement of doble coil SMA springs and one coil SMA springs induced by thermal loading, we show that the double coil SMA spring not only mitigate the unbalance of performance but also have a large recovery displacement for its recovery force than one coil SMA spring.
Keywords
shape memory alloy; double coil; spring; nonlinear;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Benard, W.L., Kahn, H., Heuer, A.H., Huff, M.A. (1997) A Titanium-Nikel Shape Memory Alloy Actuated Micropump, Solid State Sensors and Actuators, TRANSDUCERS '97 Chicago, 1(1), pp.361-364.
2 Bergamasco, M., Salsedo, F., Dario, P. (1989) A Linear SMA Motor as Direct-Drive Robotic Actuator, Robotics and Automation, Proceedings., 1989 IEEE International Conference on, 1, pp.618-623.
3 Bergamasco, M., Salsedo, F., Dario, P. (1989) Shape Memory Alloy Micromotors for Direct-Drive Actuation of Dexterous Artificial Hands, Sensors and Actuators, 17, pp.115-119.   DOI
4 Boyd, J. G., Lagoudas, D. C., (1996). A Thermodynamical Constitutive Model for Shape Memory Materials, Part I. The Monolithic Shape Memory Alloy, Int. J. Plasticity 12, pp.805-842.   DOI
5 Buehler, J., Wang, F.E. (1967) A Summary of Recent Research on the Nitinol Alloys and Their Potential Application in Ocean Engineering, The IEEE Journal of Oceanic Engineering, 1, pp.105-120.
6 Chang, L.C., Read, T.A. (1951) Plastic Deformation and Diffusionless Phase Change in Metal; The Gold-Cadmium Beta Phase, Transactions of the American Institute of Mechanical Engineers, 191, pp.47.
7 Chen, C.H., Zheng, R.T., Kung, T.T, Shauo, C.N, Shy, H.J (2009) A Strain-Fiber Actuator by use of Shape Memory Alloy Spring, International Journal for Light and Electron Optics, 120(16), pp.818- 823.   DOI
8 Deborah, S.L., Robert, M.F., Arkadi, G., Sigmund, E., Arvin, P., Andre, B., Geraldine, K., Charles, S., Itzak V. (1988) A New Intratracheal Stent for Tracheobronchial Reconstruction: Experimental and Clinical Studies, Journal of Pediatric Surgery, 23(12), pp.1173-1177.   DOI   ScienceOn
9 Greninger, A.B., Mooradian, V.G. (1938) Strain Transformation in Metastable Beta Cooper-Zinc and Beta Copper-Ti Alloys, Transactions of the American Institute of Mechanical Engineers, 128, pp.337-369.
10 Johnson, A.D., Busch, J.D., Curtis, R,A., Charlse, S. (1992) Fabrication of Silicon-Based Shape Memory Alloy Microactuators, Mat. Res. Soc. Symp. Proc, 1992, 276.
11 Khan, M.M., Lagoudas, D.C., Mayes, J.J., Henderson, B.K. (2004) Pseudoelastic SMA Spring Elements for Passive Vibration Isolation, Journal of Intelligent Material Systems and Structures, 16(6), pp.415-441.
12 Kim, S.W., Koh, J.S., Cho, M., Cho, K.J. (2010) Towards a Bio-Mimetic Flytrap Robot Based on a Snap-Through Mechanism, Biomedical Robotics and Biomechatronics, 2010 3rd IEEE RAS and EMBS International Conference on, pp.534-539.
13 Kohl, M., Krevet, B., Just, E. (2002) SMA Microgripper System, Sensors and Actuators A: Physical, 97-98, pp.646-652.   DOI
14 Kurdjumov, G.V., Khandros, L.G. (1949) About a Thermoelastic Balance in Martensite Transformations, Academy Science of the Union of Soviet Socialist Republics, 66, pp.211-215.
15 Qidawai, M. A., Lagoudas, D.C., (2000). Numerical Implementaion of s Shape Memory Thermomechanical Constitutive Model Using Return Mapping Algorithms, Int. J. Numer. Methods Eng, 47, pp.1123-1168.   DOI
16 Lee, H.J., Lee, J.J., Huh, J.S. (1999) A Simulation Study on the Thermal Buckling Behavior of Laminated Composite Shells with Embedded Shape Memory Alloy (SMA) Wires, Composite Structures, London, 47, pp.463-469.   DOI
17 Maenghyo, Cho., Sanghaun, Kim, (2005). Structural Morphing Using Two-Way Shape Memory Effect of SMA, International Journal of Solids and Structures, 42(5), pp.1759-1776.   DOI
18 Mori, K., Okamoto, S. (1995) A New Self-Expansive Intraurethral Stent Using Shape Memory Alloy: A Preliminary Report of its Availability, Urology, 45(1), pp.165-170.   DOI
19 Raymond, L.O, Alfred, G, Ralph, H. (1958) Heats of Formation of ${\alpha}$-Phase Silver-Cadmium Alloys, Journal of Physical Chemistry, 62, pp.325-326.   DOI
20 Sanghaun, Kim., Maenghyo, Cho. (2007). Numerical Simulation of a Double SMA wire Actuator Using the Two-Way Shape Memory Effect of SMA, Smart Mater. Struct., 16, pp.372-381   DOI
21 Sanghaun, Kim., Maenghyo, Cho., (2010). A Simple Smart Wing Actuator Using Ni-Ti SMA, Journal of Mechanical Science and Technology, 24(9), pp.1865-1873.   과학기술학회마을   DOI
22 Toi, Y., Lee, J.B.., Taya, M. (2004) Finite Element Analysis of Superelastic, Large Deformation Behavior of Shape Memory Alloy Helical Springs, Computers and structures, 82, pp.1685-1693.   DOI