• Title/Summary/Keyword: Thermal-Mechanical

Search Result 7,849, Processing Time 0.035 seconds

Measurement of Thermal Diffusivity Using Deformation Angle Based on the Photothermal Displacement Method (광열변위법의 변형각을 이용한 열확산계수 측정)

  • Jeon, Pil-Su;Lee, Gwang-Jae;Yu, Jae-Seok;Park, Yeong-Mu;Lee, Jong-Hwa
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.2
    • /
    • pp.302-309
    • /
    • 2002
  • A new method of measuring the thermal diffusivity of solid material at room temperature using photothermal displacement is proposed. The influence of the parameters, such as radius and modulation frequency of the pump beam and the sample thickness, was studied. In previous works, thermal diffusivity was determined by the deformation angle and phase angle as the relative position between the heating and probe beams. In this study, however, we proposed the new analysis method based on the real part of deformation angle as the relative position between two beams. From the zero-crossing position of real part of deformation angle with respect to the pump beam, the thermal diffusivity of the materials can be obtained. The experimental values for different samples obtained by applying the new method are in good agreement with the literature values.

STUDY ON A EFFECTIVE THERMAL CONDUCTIVITY OF THE CFRP COMPOSITE STRUCTURE BY A SIMPLIFIED MODEL (모델 단순화에 의한 CFRP 복합 구조물의 유효 열전도율 추출 방법 연구)

  • Kim, D.G.;Han, K.I.;Choi, J.H.;Lee, J.J.;Kim, T.K.
    • Journal of computational fluids engineering
    • /
    • v.20 no.4
    • /
    • pp.63-69
    • /
    • 2015
  • The thermal balance test in vacuum chamber for satellite structures is an essential step in the process of satellite development. However, it is technically and economically difficult to fully replicate the space environment by using the vacuum chamber. To overcome these limitations, the thermal analysis through a computer simulation technique has been conducted. The CFRP composite material has attracted attention as satellite structures since it has advantages of excellent mechanical properties and light weight. However, the nonuniform nature of the thermal conductivity of the CFRP structure should be noted at the step of thermal analysis of the satellite. Two different approaches are studied for the thermal analyses; a detailed numerical modeling and a simplified model expressed by an effective thermal conductivity. In this paper, the effective thermal conductivities of the CFRP composite structures are extracted from the detailed numerical results to provide a practical thermal design data for the satellite fabricated with the CFRP composite structure. Calculation results of the surface temperature and the thermal conductivities along x, y, z directions show fairly good agreements between the detailed modeling and the simplified model for all the cases studied here.

Thermoelastic dynamic analysis of wavy carbon nanotube reinforced cylinders under thermal loads

  • Moradi-Dastjerdi, Rasool;Payganeh, Gholamhassan
    • Steel and Composite Structures
    • /
    • v.25 no.3
    • /
    • pp.315-326
    • /
    • 2017
  • In this work, thermoelastic dynamic behavior of functionally graded carbon nanotube reinforced composite (FG-CNTRC) cylinders subjected to mechanical pressure loads, uniform temperature environment or thermal gradient loads is investigated by a mesh-free method. The material properties and thermal stress wave propagation of the nanocomposite cylinders are derived after solving of the transient thermal equation and obtaining of the time history of temperature field of the cylinders. The nanocomposite cylinders are made of a polymer matrix and wavy single-walled carbon nanotubes (SWCNTs). The volume fraction of carbon nanotubes (CNTs) are assumed variable along the radial direction of the axisymmetric cylinder. Also, material properties of the polymer and CNT are assumed temperature-dependent and mechanical properties of the nanocomposite are estimated by a micro mechanical model in volume fraction form. In the mesh-free analysis, moving least squares shape functions are used to approximate temperature and displacement fields in the weak form of motion equation and transient thermal equation, respectively. Also, transformation method is used to impose their essential boundary conditions. Effects of waviness, volume fraction and distribution pattern of CNT, temperature of environment and direction of thermal gradient loads are investigated on the thermoelastic dynamic behavior of FG-CNTRC cylinders.

Thermal, Mechanical Properties of LAS with the Addition of Mullite ($Li_2O-Al_2O_3-SiO_2$계 소지의 Mullite 첨가에 의한 열적, 기계적 특성에 관한 연구)

  • 최도문;유재근;이응상
    • Journal of the Korean Ceramic Society
    • /
    • v.30 no.5
    • /
    • pp.381-388
    • /
    • 1993
  • Due to the anisotropy of thermal expansion, LAS system which has low thermal expansion property is hard to obtain a dense sintered body. Therefore, the thermal expansion coefficient and the mechanical strength were decreased. In this study, mullite, which has good mechanical properties in high temperature and comparatively low thmeral expansion coefficient, was taken as a additive in LAS system. And then, sintering, thermal, and mechanical properties were investigated. The results are follows; When mullite is added in eucryptite composition (Li2O.Al2O3.2SiO2) of LAS system, the creation of liquid phase results in the densification of sintered body and the specimen sintered at 136$0^{\circ}C$ for 2 hours shows optimum sintering condition. With the addition of mullite in eucryptite composition, mechanical strength is increased by the control of grain growth. Especially, flexual strength of EM0 specimen was about double value than the basic composition. Thermal expansion coefficients of EM0 and EM15 specimens sintered at 136$0^{\circ}C$ were -8.23$\times$10-6/$^{\circ}C$ and -4.90$\times$10-6/$^{\circ}C$ in the temperature range of RT.~80$0^{\circ}C$. As the mullite content are increased, negative thermal expansion ratios are decreased.

  • PDF

Thermal stress intensity factor solutions for reactor pressure vessel nozzles

  • Jeong, Si-Hwa;Chung, Kyung-Seok;Ma, Wan-Jun;Yang, Jun-Seog;Choi, Jae-Boong;Kim, Moon Ki
    • Nuclear Engineering and Technology
    • /
    • v.54 no.6
    • /
    • pp.2188-2197
    • /
    • 2022
  • To ensure the safety margin of a reactor pressure vessel (RPV) under normal operating conditions, it is regulated through the pressure-temperature (P-T) limit curve. The stress intensity factor (SIF) obtained by the internal pressure and thermal load should be obtained through crack analysis of the nozzle corner crack in advance to generate the P-T limit curve for the nozzle. In the ASME code Section XI, Appendix G, the SIF via the internal pressure for the nozzle corner crack is expressed as a function of the cooling or heating rate, and the wall thickness, however, the SIF via the thermal load is presented as a polynomial format based on the stress linearization analysis results. Inevitably, the SIF can only be obtained through finite element (FE) analysis. In this paper, simple prediction equations of the SIF via the thermal load under, cool-down and heat-up conditions are presented. For the Korean standard nuclear power plant, three geometric variables were set and 72 cases of RPV models were made, and then the heat transfer analysis and thermal stress analysis were performed sequentially. Based on the FE results, simple engineering solutions predicting the value of thermal SIF under cool-down and heat-up conditions are suggested.

Thermal Stability of the Mechanical and Thermal Conductive Properties on Cu-STS-Cu Clad Metal for LED Package Lead Frame (LED 리드프레임 패키징용 Cu/STS/Cu 클래드 메탈의 기계 및 열전도 특성의 온도 안정성 연구)

  • Kim, Young-Sung;Kim, Il-Gwon
    • Journal of Welding and Joining
    • /
    • v.31 no.5
    • /
    • pp.77-81
    • /
    • 2013
  • We have investigated thermal stability of the mechanical and thermal conductive properties of Cu/STS/Cu 3 layered clad metal lead frame material for a LED device package at different temperatures ranging from RT to $200^{\circ}C$. The fabricated Cu/STS/Cu clad metal has a good thermal stability for the mechanical tensile strength and thermal conductivity of the over 50 $Kg/mm^2$ to the $150^{\circ}C$ and 270 $W/m{\cdot}K$ to the $200^{\circ}C$, respectively. This clad metal lead frame material at a high temperature of $150^{\circ}C$ shows a reinforced mechanical tensile strength by 1.5 times to conventional pure copper lead frame materials and also a comparable thermal conductivity to typical copper alloy lead frame materials.

The simultaneous measurement for thermal properties of liquids using transient probe method (과도탐침법을 이용한 액체의 열물성 동시측정)

  • Bae, Sin-Cheol;Kim, Myeong-Yun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.2
    • /
    • pp.303-315
    • /
    • 1997
  • The theoretical model for the transient probe method is the modified Jaeger model which is used perfect line source theory. The transient probe technique has been developed for the simultaneous determination of thermal conductivity, diffusivity and volumetric heat capacity of liquids. The Levenberg-Marquardt iteration method is adapted to obtain thermal property within nonlinear range. Experimental results of liquids were found to agree well with recommended thermal property data.

Morphological Observation on Tribological Characteristic of Thermal Spray Coated Steel-Bar (용사 코팅된 스틸바의 트라이볼로지적 특성의 형상학적 관찰)

  • Lee, Duk Gyu;Cho, Hee Keun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.5
    • /
    • pp.559-566
    • /
    • 2014
  • Plasma coatings have been conducted to improve the mechanical properties of thermal resistance, wear resistance, corrosion resistance and thermal shock with respect to Great-Bar which is used as a carrier device for ironstone sintering under $700^{\circ}C$. The surface coatings on the upper side of the Great-Bar exposed on extreme environments of high temperature, severe wear, corrosion and thermal shock extended the life time due to the barrier coating layer. $Al_2O_3$, $Cr_2O_3$, WC coatings were applied to Great-Bar and their mechanical and chemical properties are analyzed by several experimental tests such as thermal resistance, wear resistance, corrosion resistance and thermal shock resistance. It shows excellent advantages with respect to wear, thermal shock and corrosion.

Measurement of Mechanical Property and Thermal Expansion Coefficient of Carbon-Nanotube-Reinforced Epoxy Composites (탄소나노튜브로 강화된 에폭시 복합재료의 기계적 물성과 열팽창 계수 측정)

  • Ku, Min Ye;Kim, Jung Hyun;Kang, Hee Yong;Lee, Gyo Woo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.5
    • /
    • pp.657-664
    • /
    • 2013
  • By using shear mixing and ultrasonication, we fabricated specimens of well-dispersed multi-walled carbon nanotube composites. To confirm the proper dispersion of the filler, we used scanning electron microscopy images for quantitative evaluation and a tensile test for qualitative assessment. Furthermore, the coefficients of thermal expansion of several specimens having different filler contents were calculated from the measured thermal strains and temperatures of the specimens. Based on the microscopy images of the well-dispersed fillers and the small deviations in the measurements of the tensile strength and stiffness, we confirmed the proper dispersion of nanotubes in the epoxy. As the filler contents were increased, the values of tensile strength increased from 58.33 to 68.81 MPa, and those of stiffness increased from 2.93 to 3.27 GPa. At the same time, the coefficients of thermal expansion decreased. This implies better thermal stability of the specimen.