DOI QR코드

DOI QR Code

Measurement of Mechanical Property and Thermal Expansion Coefficient of Carbon-Nanotube-Reinforced Epoxy Composites

탄소나노튜브로 강화된 에폭시 복합재료의 기계적 물성과 열팽창 계수 측정

  • Ku, Min Ye (Div. of Mechanical Design Engineering, Chonbuk Nat'l Univ.) ;
  • Kim, Jung Hyun (Div. of Mechanical Design Engineering, Chonbuk Nat'l Univ.) ;
  • Kang, Hee Yong (Div. of Mechanical Design Engineering, Chonbuk Nat'l Univ.) ;
  • Lee, Gyo Woo (Div. of Mechanical Design Engineering, Chonbuk Nat'l Univ.)
  • 구민예 (전북대학교 기계설계학공학부(친환경기계부품설계연구센터)) ;
  • 김정현 (전북대학교 기계설계학공학부(친환경기계부품설계연구센터)) ;
  • 강희용 (전북대학교 기계설계학공학부(친환경기계부품설계연구센터)) ;
  • 이교우 (전북대학교 기계설계학공학부(친환경기계부품설계연구센터))
  • Received : 2012.12.28
  • Accepted : 2013.01.24
  • Published : 2013.05.01

Abstract

By using shear mixing and ultrasonication, we fabricated specimens of well-dispersed multi-walled carbon nanotube composites. To confirm the proper dispersion of the filler, we used scanning electron microscopy images for quantitative evaluation and a tensile test for qualitative assessment. Furthermore, the coefficients of thermal expansion of several specimens having different filler contents were calculated from the measured thermal strains and temperatures of the specimens. Based on the microscopy images of the well-dispersed fillers and the small deviations in the measurements of the tensile strength and stiffness, we confirmed the proper dispersion of nanotubes in the epoxy. As the filler contents were increased, the values of tensile strength increased from 58.33 to 68.81 MPa, and those of stiffness increased from 2.93 to 3.27 GPa. At the same time, the coefficients of thermal expansion decreased. This implies better thermal stability of the specimen.

에폭시 수지에 다중벽 탄소나노튜브를 첨가하여 초음파 처리와 전단혼합 방법으로 분산시켜 다중벽 탄소나노튜브로 강화된 에폭시 복합재료를 제조하였으며, 에폭시 수지 내 다중벽 탄소나노튜브의 분산 적정성을 판단하고 기계적 및 열적 물성을 고찰하였다. 충전재 분산에 대한 평가를 위해 정성적인 방법으로 주사전자현미경(scanning electron microscope, SEM) 이미지를 사용하였고, 정량적인 판단을 위해 인장실험을 실시하였다. 또한, 열적 특성을 평가하기 위해 열팽창계수(coefficient of thermal expansion, CTE)를 측정하였다. 주사전자현미경 사진 및 인장 강도와 영률(Young's modulus)의 작은 편차를 통해서 다중벽 탄소나노튜브가 에폭시 수지 내에 적절히 분산되었음을 확인하였다. 충전재 함량에 따라 인장 강도와 영률이 증가함을 보였고 열팽창계수 측정에서는 열안정성 개선을 고찰하였다.

Keywords

References

  1. Iijima, S., 1991, "Helical Microtubules of Graphitic Carbon," Nature, Vol. 354, pp. 56-58. https://doi.org/10.1038/354056a0
  2. Yu, M .F., Lourie, O., Dyer, M. J., Moloni,K., Kelly, T. F. and Ruoff, R. S. 2000, "Select This Article Strength and Breaking Mechanism of Multiwalled Carbon Nanotubes Under Tensile Load," Science, Vol. 277, pp. 637-640.
  3. Kim, P., Shi, L., Majumdar, A., McEuen, P. L., 2001, "Thermal Transport Measurements of Individual Multiwalled Nanotubes," Physical review Letters, Vol. 87, No. 21, 215502-1-4. https://doi.org/10.1103/PhysRevLett.87.215502
  4. Gojny, F. H., Wichmann, M. H. G., Kopke, U., Fiedler, B., Schulte, K., 2004, "Carbon Nanotube - Reinforced Epoxy-Composites: Enhanced Stiffness and Fracture Toughness at Low Nanotube Content," Composites Science and Technology, Vol. 64, No. 15, pp. 2363-2371. https://doi.org/10.1016/j.compscitech.2004.04.002
  5. Chang, T.-E., Kisliuk, A.. Rhodes, S. M.. Brittain, W. J.. Sokolov, A. P., 2006, "Conductivity and Mechanical Properties of Well-Dispersed Single-Wall Carbon Nanotube /Polystyrene Composite," Polymer, Vol. 47, No. 22, pp. 7740-7746. https://doi.org/10.1016/j.polymer.2006.09.013
  6. Xiong, J., Zheng, Z., Qin, X., Li, M., Li, H. and Wang, X. 2006, "The Thermal and Mechanical Properties of a Polyurethane/Multi-Walled Carbon Nanotube Composite Original Research Article," Carbon, Vol. 44, No. 13, pp. 2701-2707. https://doi.org/10.1016/j.carbon.2006.04.005
  7. Shelimov, K. B., Esenaliev, R. O., Rinzler, A. G., Huffman, C. B. and Smalley, R. E., 1998, "Purification of Single-Wall Carbon Nanotubes by Ultrasonically Assisted Filtration," Chemical Physics Letters, Vol. 282, No. 5-6, pp. 429-434. https://doi.org/10.1016/S0009-2614(97)01265-7
  8. Lu, K. L., Lago, R. M., Chen, Y. K., Green, M. L. H., Harris, P. J. F. and Tsang, S. C., 1996, "Mechanical Damage of Carbon Nanotubes by Ultrasound," Carbon, Vol. 34, No. 6, pp. 814-816. https://doi.org/10.1016/0008-6223(96)89470-X
  9. Kim, Y. J., Shin, T. S., Choi, H. D., Kwon, J. H., Chung, Y. C. and Yoon, H. G., 2005, "Electrical Conductivity of Chemically Modified Multiwalled Carbon Nanotube/Epoxy Composites," Carbon, Vol. 43, No. 1, pp. 23-30. https://doi.org/10.1016/j.carbon.2004.08.015
  10. Kim, J. W., Im, H. G., Kim, J. H., 2011, "The Effect of Surface Modifacation on the Dispersibilities and the Thermal Conductivities of Single-Walled Carbon Nanotube (SWCNT)/Epoxy Composites," Appl. Chem. Eng., Vol. 22, No. 3, pp. 266-271.
  11. Hilding, J., Grulke, E. A., Zhang, Z. G. and Lockwood, F., 2003, "Dispersion of Carbon Nanotubes in Liquids," Journal of Dispersion Science and Technology, Vol. 24, No. 1, pp. 1-41. https://doi.org/10.1081/DIS-120017941
  12. Lee, S. E., Lee, W. J., Kim, C. K., 2004, "Fabrication and Design of Multi-Layered Radar Absorbing Structures of MWNT-Filled Glass/Epoxy Plain-Weave Composites," KSAS, pp. 480-483.
  13. ASTM D638-10, "Standard Test Method for Tensile Properties of Plastics," ASTM.
  14. Instruction Bulletin B-127-14, "Strain Gage Installations with M-bond 200 Adhesive," Micro-Measurements.
  15. Jang, J.-S., Varischetti, J., Lee, G. W. and Suhr, J., 2011, "Experimental and Analytical Investigation of Mechanical Damping and CTE of Both $SiO_{2}$ Particle and Carbon Nanofiber Reinforced Hybrid Epoxy Composites," Composites Part A, Vol. 42, No. 1, pp. 98-103. https://doi.org/10.1016/j.compositesa.2010.10.008
  16. Goo, N. S., Kwon, Y. D., Kim, J.-S. and Yoon, K. J., 2001, "Measurement Method of Strain/Stress in a Variable Temperature Environment and Its Application to Measurement of CTE of a Composite," KSAS, Vol. 29, No. 2, pp. 43-51.
  17. Lee, S.-E., Lee, W.-J. and Kim, C.-G., 2004, "A Study on Tensile Properties of Multi-Walled Carbon Nanotube/Epoxy Composites," Journal of the Korean Society for Composite Materials, Vol. 17, No. 6, pp. 1-7.
  18. Gkikas, G., Barkoula, N.-M. and Paipetis, A. S., 2012, "Effect of Dispersion Conditions on the Thermo-Mechanical and Toughness Properties of Multi Walled Carbon Nanotubes-Reinforced Epoxy," Composite: Part B, Vol. 43, pp. 2697-2705. https://doi.org/10.1016/j.compositesb.2012.01.070

Cited by

  1. Measurement and Evaluation of Thermal Expansion Coefficients of Micrometer-Sized SiO2 Particle-Reinforced Epoxy Composites vol.39, pp.2, 2015, https://doi.org/10.3795/KSME-A.2015.39.2.129