• 제목/요약/키워드: Thermal stability and mechanical analysis

검색결과 242건 처리시간 0.028초

Conceptual design and analysis of rotor for a 1-kW-Class HTS rotating machine

  • Kim, J.H.;Hyeon, C.J.;Quach, H.L.;Chae, Y.S.;Moon, J.H.;Boo, C.J.;Kim, H.M.
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제19권4호
    • /
    • pp.45-50
    • /
    • 2017
  • This paper presents a conceptual design and analysis for a 1-kW-class high-temperature superconducting rotating machine (HTSRM) rotor. The designed prototype is a small-scale integration system of a HTSRM and a HTS contactless rotary excitation device (CRED). Technically, CRED and HTSRM are connected in the same shaft, and it effectively charges the HTS coils of the rotor field winding by pumping fluxes via a non-contact method. HTS coils in rotor pole body and toroidal HTS wire in CRED rotor are cooled and operated by liquid nitrogen in cryogen tank located in inner-most of rotor. Therefore, it is crucial to securely maintain the thermal stability of cryogenic environment inside rotor. Especially, we critically consider not only on mechanical characteristics of the rotor but also on cryogenic thermal characteristics. In this paper, we conduct two main tasks covering optimizing a conceptual design and performing operational characteristics. First, rotor parameters are conceptually designed by analytical design codes. These parameters consider to mechanical and thermal performances such as mechanical strength, mechanical rigidity, and thermal heat losses of the rotor. Second, mechanical and thermal characteristics of rotor for 1-kW-class HTSRM are analyzed to verify the feasible operation conditions. Hence, three-dimensional finite element analysis (3D-FEA) method is used to perform these analyses in ANSYS-Workbench platform.

경사진 등온 평판위 의 자연대류 유동 에서의 와류 불안정성 과 열전달 상관관계 (Vortex Instability and Heat Transfer Correlations in the Natural Convection Flow over Inclined Isothermal flat Plates)

  • 최창균;유정열;이형인
    • 대한기계학회논문집
    • /
    • 제8권1호
    • /
    • pp.10-17
    • /
    • 1984
  • The critical conditions marking the onset of thermally induced vortices over an inclined iso-thermal plate are investigated using the linear stability theory. The stability equations are simplified by estimating the orders of magnitude of respective terms. The analysis is carried out under the assumption that for the system of large Prandtl numbers temperature disturbances are initiated within the conventional thermal boundary layer of the basic flow. The stability criteria obtained from the present results agree well with those of the existing quasi-parallel flow models. In addition it is found that the critical conditions generate the heat transfer correlation in good agreement with experiments. Therefore, it is suggested that the validity of existing theoretical models will be reexamined.

희토류 산화물이 첨가된 YSZ 기반의 열차폐 코팅용 소재의 상 형성 및 기계적 특성 (Formation of Phases and Mechanical Properties of YSZ-Based Thermal Barrier Coating Materials Doped with Rare Earth Oxides)

  • 최용석;이계원;남산;오윤석
    • 한국분말재료학회지
    • /
    • 제30권5호
    • /
    • pp.402-408
    • /
    • 2023
  • This study focused on improving the phase stability and mechanical properties of yttria-stabilized zirconia (YSZ), commonly utilized in gas turbine engine thermal barrier coatings, by incorporating Gd2O3, Er2O3, and TiO2. The addition of 3-valent rare earth elements to YSZ can reduce thermal conductivity and enhance phase stability while adding the 4-valent element TiO2 can improve phase stability and mechanical properties. Sintered specimens were prepared with hot-press equipment. Phase analysis was conducted with X-ray diffraction (XRD), and mechanical properties were assessed with Vickers hardness equipment. The research results revealed that, except for Z10YGE10T, most compositions predominantly exhibited the t-phase. Increasing the content of 3-valent rare earth oxides resulted in a decrease in the monoclinic phase and an increase in the tetragonal phase. In addition, the t(400) angle decreased while the t(004) angle increased. The addition of 10 mol% of 3-valent rare-earth oxides discarded the t-phase and led to the complete development of the c-phase. Adding 10 mol% TiO2 increased hardness than YSZ.

리튬이온전지 열폭주에 대해 양극활물질이 미치는 영향에 대한 수치해석적 연구 (Numerical analysis on thermal runaway by cathode active materials in lithium-ion batteries)

  • 강명보;김남진
    • 한국지열·수열에너지학회논문집
    • /
    • 제17권2호
    • /
    • pp.1-10
    • /
    • 2021
  • Lithium-ion batteries with high energy density, long cycle life and other advantages, have been widely used to energy storage systems(ESS). But as ESS fires frequently occur, the safety concern has become the main obstacle that hinders the large-scale applications of lithium-ion batteries. Especially, thermal runaway is the key scientific problem in battery safety research. Therefore, in this study, we performed a numerical analysis on the thermal runaway phenomenon of NCM111, NCM523 and NCM622 batteries using a two-dimensional analysis model. The results show that the two-dimensional simulation results are generally matched with three-dimensional simulation. Also, In the case of NCM111 with a low Ni content in the temperature range used in this study, thermal runaway phenomenon does occurred very slowly, but as the Ni content is increased, the thermal runaway phenomenon occurs rapidly and the thermal stability tends to be decreased. And, in NCM523 and NCM622 batteries, chain reactions occur almost simultaneously, but in the case of NCM111 battery, it is found that after the SEI(Solid Electrolyte Interface) layer decomposition reaction, the cathode-electrolyte reaction is appeared sequentially. After that, the anodic decomposition reaction is increased and leads to the thermal runaway reaction.

볼스크류 선회형 가공장비의 설계 및 해석에 관한 연구 (A Study on the Analysis and Design for a Ball Screw Whirling Machine)

  • 이춘만;문성호;김은중
    • 한국정밀공학회지
    • /
    • 제34권3호
    • /
    • pp.173-178
    • /
    • 2017
  • Recently, a high-precision ball screw is an essential part of high-speed machines. However, producing high-precision ball screws has been costly and time-consuming. Nowadays, a whirling machine is used to produce high-precision ball screws efficiently. Rotating multi-tips are used to turn the ball screw in the whirling machine. In this study, a structural analysis was performed by a finite-element method to develop a whirling machine. An improved model of the whirling machine was proposed by the analysis. In addition, a thermal analysis was performed to confirm the thermal stability. The results of the analysis can be applied in order to further develop the whirling machine.

열변형 해석을 위한 허니컴 샌드위치 평판의 열 및 탄성 물성치 예측에 관한 연구 (Prediction of Thermal and Elastic Properties of Honeycomb Sandwich Plate for Analysis of Thermal Deformation)

  • 홍석민;이장일;변재기;최영돈
    • 대한기계학회논문집B
    • /
    • 제38권4호
    • /
    • pp.347-355
    • /
    • 2014
  • 전자장치들의 소형화 및 박형화가 됨에 따라 전자장치의 수명과 직결되는 열적문제가 중요해지고 있다. 열적문제를 해결하기위해 열확산과 단열을 통한 열적 안정성 연구가 필요하다. 허니컴 샌드위치 평판은 이방성의 열전도계수를 갖는다. 허니컴 샌드위치 평판이 적용된 시스템에 대해 온도분포와 열변형을 해석하기 위하여 열 및 탄성 물성치가 필요하다. 본 연구에서는 허니컴 코어의 크기, 두께 그리고 구성된 재료에 따라 허니컴 샌드위치 평판의 물성치가 변하기 때문에 허니컴 샌드위치 평판의 열전도계수, 열팽창계수, 탄성계수, 전단탄성계수, 푸아송비와 같은 열 및 탄성 물성치를 예측하였다.

Structural Stability of High-temperature Butterfly Valve Using Interaction Analysis

  • Lee, Moon-Hee;Son, In-Soo
    • 한국산업융합학회 논문집
    • /
    • 제23권6_1호
    • /
    • pp.881-888
    • /
    • 2020
  • A butterfly valve is a valve that adjusts flow rate by rotating a disc for about 90° with respect to the axis that is perpendicular to the flow path from the center of its body. This valve can be manufactured for low-temperature, high-temperature and high-pressure conditions because there are few restrictions on the used materials. However, the development of valves that can be used in a 600℃ environment is subject to many constraints. In this study, the butterfly valve's stability was evaluated by a fluid-structured interaction analysis, thermal-structure interaction analysis, and seismic analysis for the development of valves that can be used in high-temperature environments. When the reverse-pressure was applied to the valve in the structural analysis, the stress was low in the body and seat compared to the normal pressure. Compared with the allowable strength of the material for the parts of the valve system, the minimum safety factor was approximately 1.4, so the valve was stable. As a result of applying the design pressures of 0.5 MPa and 600℃ under the load conditions in the thermal-structural analysis, the safety factor in the valve body was about 3.4 when the normal pressure was applied and about 2.7 when the reverse pressure was applied. The stability of the fluid-structure interaction analysis was determined to be stable compared to the 600℃ yield strength of the material, and about 2.2 for the 40° open-angle disc for the valve body. In seismic analysis, the maximum value of the valve's stress value was about 9% to 11% when the seismic load was applied compared to the general structural analysis. Based on the results of this study, the structural stability and design feasibility of high-temperature valves that can be used in cogeneration plants and other power plants are presented.

디스크 브레이크와 패드의 접촉을 고려한 벤틸레이티드 디스크 브레이크의 열적거동에 관한 연구 (Thermal Behavior of Ventilated Disc Brakes Considering Contact Between Disc and Pad)

  • 마정범;이봉구
    • 한국생산제조학회지
    • /
    • 제23권3호
    • /
    • pp.259-265
    • /
    • 2014
  • When the brakes of a vehicle are applied, large amounts of heat are generated on the surfaces of the brake discs owing to friction between the discs and the brake pads. A high temperature gradient on the disc surfaces leads to thermal deformation and severe disc abrasion. Ultimately, the thermal deformation and disc wear give rise to a thermal judder phenomenon, which has a major effect on the stability of the vehicle. To investigate and propose a solution to these problems, thermoelastic instabilities under applied thermal and mechanical loads were analyzed using the commercial finite element package ANSYS by considering the contact surfaces between the discs and pads. Direct-contact three-dimensional finite elements between the discs and pads were applied to investigate the disc friction temperature, thermal deformation, and contact stress so that the thermal judder phenomenon on the surface of the disc could be predicted.

유한요소법을 이용한 유압브레이커 Cylinder와 Piston의 열-구조 연성해석을 통한 안정성 평가 (Assessment of Stability of Stability of Hydraulic Breaker Cylinder and Piston through Thermal-Structural coupled Field Analysis by Finite Element Method)

  • 임동욱;박윤수;신봉철
    • Design & Manufacturing
    • /
    • 제12권1호
    • /
    • pp.41-46
    • /
    • 2018
  • This study proves the causes of cylinder and piston jam by scratches which is the fatal problem of hydraulic breaker through the thermal analysis and thermal-structural coupled field analysis. The trouble from the scratch is a complex problem which can be caused by manufacturing process (this is an internal factor) and the users mistake or contamination in the hydraulic circuit (these are an external factor). Hence, it's not easy to investigate the causes, also hard to prevent the recurrence. In this reason, hydraulic breaker manufacturers are trying to improve the manufacturing process such as machining, heat treatment, grinding, cleaning, also to prevent the contamination in hydraulic circuit and to remove the remains. It's being managed thoroughly by manufacturers. This study shows the effect of the temperature rise by the frictional heat generated when the piston hits the tool on the hydraulic oil while the hydraulic breaker is operating, also the temperature distribution when it starts to affect main components of hydraulic breaker. The stress and the amount of deformation also could be found through thermal-structural coupled field analysis. It proved that the stress and deformation are proportionally increased according to the temperature rise in hit area, and it affects the cylinder and the viscosity of hydraulic oil inside the cylinder when it heats up beyond the certain temperature.

등온 수평 평판 위를 지나는 층류유동 의 열적 불안전성 및 열전달 상관관계 (Thermal Instability and Heat Transfer Correlations of Laminar Flow over Isothermal Horizontal Flat Plate)

  • 박병완;유정열;최창균;노승탁
    • 대한기계학회논문집
    • /
    • 제9권5호
    • /
    • pp.613-620
    • /
    • 1985
  • 본 연구의 목적은 수평 Blasius유동의 열적 불안정성 문제에서 유동방향 좌표 에도 의존하는 교란양을 최초로 도입함으로써 보다 합리적인 안정성 해석을 수행하고 그 결과를 기존의 실험적 및 이론적인 자료들과 비교하며 이를 토대로 한 보다 실제적 인 열전달 상관관계를 얻고자 하는데 있다.