• Title/Summary/Keyword: Thermal spalling

Search Result 75, Processing Time 0.022 seconds

Thermal stress and pore pressure development in microwave heated concrete

  • Akbarnezhad, A.;Ong, K.C.G.
    • Computers and Concrete
    • /
    • v.8 no.4
    • /
    • pp.425-443
    • /
    • 2011
  • Most previous studies have generally overlooked the contribution of thermal stresses generated within the concrete mass when subjected to microwave heating and reported on pore-pressure as being the dominant cause of surface spalling. Also, the variation in electromagnetic properties of concrete and its effects on the microwave heating process have not been studied in detail. In this paper, finite element modeling is used to examine the simultaneous development of compressive thermal stresses and pore-pressure arising from the microwave heating of concrete. A modified Lambert's Law formulation is proposed to estimate the microwave power dissipation in the concrete mass. Moreover, the effects of frequency and concrete water content on the concrete heating rate and pattern are investigated. Results show high compressive stresses being generated especially in concrete with a high water content when heated by microwaves of higher frequencies. The results also reveal that the water content of concrete plays a crucial role in the microwave heating process.

Studies on Damage Properties of MgO-C Refractories through Hertzian Indentation at Room and High Temperatures

  • Cho, Geun-Ho;Byeun, Yunki;Jung, Yeon-Gil
    • Journal of the Korean Ceramic Society
    • /
    • v.56 no.1
    • /
    • pp.77-83
    • /
    • 2019
  • MgO-C refractories are used in basic furnaces and steel ladles due to their many desirable properties, such as excellent thermal shock resistance via low thermal expansion, and high thermal conductivity. However, the mechanical and thermal properties of the refractory continuously deteriorate by spalling phenomena and pore generation due to the oxidation of graphite, used as a carbon source, indicating that the characteristics and performance of MgO-C refractories need to be improved by using a new material or composition. In this study, the use of a Hertzian indentation test as a method for determining the damage and fracture behavior of an MgO-C refractory is described. The results highlight that Hertzain indentation tests can be one of the important evaluation tools for quasi-plastic damage accumulation of MgO-C refractories during falling process of scrap metal.

A Study on the Mechanical Properties of Concrete with Aggregate Type (골재 종류에 따른 콘크리트의 고온역학적 특성에 관한 연구)

  • Yoon, Dae-Ki;Kim, Gyu-Yong;Lee, Tae-Gyu;Choe, Gyeong-Choel;Koo, Kyung-Mo;Nam, Jeong-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.05a
    • /
    • pp.63-64
    • /
    • 2012
  • In case of concrete, it should be deformed by many factors, such as explosive spalling, thermal strain and creep at high temperature. Structural fire design has been proposed to predict fire damage as national standard. It is general safer to use values obtained from tests of unstressed residual test in stead of stressed test. But most of thermal properties on concrete were conducted with normal aggregate. In this study, it evaluated mechanical properties of concrete with aggregate type and loading condition. we use normal and light aggregate to have different thermal properties. Also, we test mechanical properties to use Ø100×200 mm cylinder specimen according to target temperature and 0%, 20%, 40% loading.

  • PDF

Recent Progress in Pb-free Solders and Soldering Technology: Fundamentals, Reliability Issues and Applications

  • Kang Sung Kwon
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2004.09a
    • /
    • pp.1-26
    • /
    • 2004
  • The implementation of Pb-free solder technology is making good progress in electronic industry. Further understanding on fundamental issues on Pb-free solders/processes is required to reduce reliability risk factors of Pb-free solder joints. Several reliability issues including thermal fatigue, impact reliability, IMC growth, spalling, void formation are reviewed for Pb-free solder joints. Several applications of Pb-free technology are discussed, such as Pb-free, CBGA, CuCGA, flip chips, and wafer bumping by IMS.

  • PDF

Mineral and Chemical Changes in Silica Brick After Service in Arc-furnace Roofs (아-크로 천장 사용후의 규석벽돌의 광물 및 화학적 변화)

  • 오기동;박홍채
    • Journal of the Korean Ceramic Society
    • /
    • v.18 no.4
    • /
    • pp.247-256
    • /
    • 1981
  • Silica bricks had been in arc-furnace roofs of various sizes and steelmaking practices. The resulting materials were examined with reference to mineral and chemical changes. Silica bricks develope definite zones while in service. These zones represent a concentration gradient through the brick that results from the thermal gradient across the brick and from the furnace atmosphere. There are major brick losses by spalling as well as by melting of the hot-face surface in an iron-oxide rich liquid.

  • PDF

Properties of Castable REfractories Containing Metallic Al Powder (금속 Al분말 첨가 Castable 내화물의 특성)

  • 김효준;김인술;이상완
    • Journal of the Korean Ceramic Society
    • /
    • v.27 no.7
    • /
    • pp.877-882
    • /
    • 1990
  • Effects of metallic Al powder addition on basic and thermal properties of castable refractories were investigated. Generally, low grade prooperties were obtained by metallic Al powder addition with the increase of temperature, comparing with those of non-addition of Al powder. Especially, Al addtion showed severe shrinkage, corrosiion and low strength above 1000$^{\circ}C$. As a result of Al addition, lower strength of and higher corrosion resistance were shown for 2% addition, but it was reversed for above 4% addition. It was found that Al addition was excellent in the explosive spalling test regardless of Al quantity.

  • PDF

Thermal Stress Induced Spalling of Metal Pad on Silicon Interposer (열응력에 의한 실리콘 인터포저 위 금속 패드의 박락 현상)

  • Kim, Junmo;Kim, Boyeon;Jung, Cheong-Ha;Kim, Gu-sung;Kim, Taek-Soo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.29 no.3
    • /
    • pp.25-29
    • /
    • 2022
  • Recently, the importance of electronic packaging technology has been attracting attention, and heterogeneous integration technology in which chips are stacked out-of-plane direction is being applied to the electronic packaging field. The 2.5D integration circuit is a technology for stacking chips using an interposer including TSV, and is widely used already. Therefore, it is necessary to make the interposer mechanically reliable in the packaging process that undergoes various thermal processes and mechanical loadings. Considering the structural characteristics of the interposer on which several thin films are deposited, thermal stress due to the difference in thermal expansion coefficients of materials can have a great effect on reliability. In this study, the mechanical reliability of the metal pad for wire bonding on the silicon interposer against thermal stress was evaluated. After heating the interposer to the solder reflow temperature, the delamination of the metal pad that occurred during cooling was observed and the mechanism was investigated. In addition, it was confirmed that the high cooling rate and the defect caused by handling promote delamination of the metal pads.

An Experimental Study on the Engineering Properties of Deteriorated Concrete using Recycled Fine Aggregate by Fire Damage (재생잔골재를 활용한 화재피해를 입은 콘크리트의 공학적 특성에 관한 실험적 연구)

  • Kwon, Yung-Jin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.1
    • /
    • pp.190-196
    • /
    • 2006
  • In the existed study, a fire outbreak in a reinforced concrete structure looses the organism by the different contraction and expansion of hardened cement pastes and aggregate, and causes cracks by thermal stress, leading to the deterioration of the durability. So accurate diagnosis of deterioration is needed based on mechanism of fire deterioration in general concrete structures. Fundamental information and data on the Properties of concrete exposed to high temperature are necessary for accurate diagnosis of deterioration. Therefore, This study is willing to propose fundamental data for quick and accurate diagnosis of deteriorated concrete structure by fire damage with making variable concrete test specimen, exposing high temperature environment, observing the explosive spalling and examining engineering property.

Effects of glass powder on the characteristics of concrete subjected to high temperatures

  • Belouadah, Messaouda;Rahmouni, Zine El Abidine;Tebbal, Nadia
    • Advances in concrete construction
    • /
    • v.6 no.3
    • /
    • pp.311-322
    • /
    • 2018
  • This paper presents an experimental investigation on the performance of concrete with and without glass powder (GP) subjected to elevated temperatures. Mechanical and physicochemical properties of concretes were studied at both ambient and high temperatures. One of the major environmental concerns is disposal or recycling of the waste materials. However, a high volume of the industrial production has generated a considerable amount of waste materials which have a number of adverse impacts on the environment. Further, use of glass or by-products in concrete production has advantages for improving some or all of the concrete properties. The economic incentives and environmental benefits in terms of reduced carbon footprint are also the reason for using wastes in concrete. The occurrence of spalling, compressive strength, mass loss, chemical composition, crystalline phase, and thermal analysis of CPG before and after exposure to various temperatures (20, 200, 400, and $600^{\circ}C$) were comprehensively investigated. The results indicated that, the critical temperature range of CPG was between $400^{\circ}C$ and $600^{\circ}C$.

Thermal Shock Behavior of TiN Coating Surface by a Pulse Laser Ablation Method

  • Noh, Taimin;Choi, Youngkue;Jeon, Min-Seok;Shin, Hyun-Gyoo;Lee, Heesoo
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.7
    • /
    • pp.539-544
    • /
    • 2012
  • Thermal shock behavior of TiN-coated SUS 304 substrate was investigated using a laser ablation method. By short surface ablation with a pulse Nd-YAG laser, considerable surface crack and spalling were observed, whereas there were few oxidation phenomena, such as grain growth of TiN crystallites, nucleation and growth of $TiO_2$ crystallites, which were observed from the coatings quenched from $700^{\circ}C$ in a chamber. The oxygen concentration of the ablated coating surface with the pulse laser also had a lower value than that of the quenched coating surface by Auger electron spectroscopy and electron probe micro analysis. These results were attributed to the fact that the properties of the pulse laser method have a very short heating time and so the diffusion time for oxidation was insufficient. Consequently, it was verified that the laser thermal shock test provides a way to evaluate the influence of the thermal shock load reduced oxidation effect.