• Title/Summary/Keyword: Thermal shock test

Search Result 237, Processing Time 0.033 seconds

Thermal shock test of SiC/C functionally graded materials (FGM) and thermal stress simulation (SiC/C 경사기능재료의 열충격 시험과 열응력 모사)

  • 김유택;이성철;최근혁
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.8 no.4
    • /
    • pp.612-618
    • /
    • 1998
  • Monolithic SiC and SiC/C FGM layers were deposited on the graphite substrates by the CVD method and their thermal properties of the two specimens were investigated by thermal shock test for comparison. Temperature profiles and thermal stress distributions on thermal shock test were calculated by a commercially used computer program to see the thermal stress differences inside of two specimens. The specimens coated with FGM were expected to show a efficient relaxation of thermal stresses at the interface and they were not cracked under the actual $\Delta$T=1600 K experimental condition. This result proved that the experimental results were well accorded with the expectation from the theoretical calculations.

  • PDF

Thermal Shock Resistance of Bilayered YSZ Thermal Barrier Coating

  • Lee, Dong Heon;Kim, Tae Woo;Lee, Kee Sung;Kim, Chul
    • Journal of the Korean Ceramic Society
    • /
    • v.55 no.5
    • /
    • pp.452-460
    • /
    • 2018
  • This study investigate changes in mechanical behaviors such as indentation load-displacement and hardness of thermal barrier coatings (TBCs) using cycling of thermal shock test. Relatively dense and porous TBCs on nickel-based bondcoat/super alloy are prepared using different starting granules, 204C-NS and 204NS commercial powers, and the effect of double layers of 204C-NS on 204NS and 204NS on 204C-NS are investigated. The highest temperature applied during thermal shock test is $1100^{\circ}C$ and the maximum number of cycles is 1,200. The results indicate that bilayered TBC showed a relatively mechanically resistant property during thermal shock cycles and that the mechanical behavior is influenced by the microstructure of TBCs by exposure to high temperature during tests or different starting granules.

Thermal Shock Stress Intensity Factor and Fracture Test (열충격 응력세기계수와 파괴실험)

  • 이강용;심관보
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.1
    • /
    • pp.130-137
    • /
    • 1990
  • Thermal shock stress intensity factor for an edge-cracked plate subjected to thermal shock is obtained from Bueckner's weight function method. It is shown that thermal shock stress intensity factor has maximum values with variation of time and crack length and that there is most dangerous crack length. By comparing thermal shock stress intensity factor with fracture toughness, the fracture time and critical temperature difference due to thermal shock are determined theoretically. Under constant thermal shock temperature difference, and increase of crack length is shown to increase fracture time. The theoretical fracture time is compared with experimental value measured by acoustic emission method with soda lime glass.

Thermal shock characteristics of work roll for cold rolling mills (냉간 압연용 Wo가 Roll의 열충격 특성)

  • 박영철;김일봉;전제영;조규섭
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.08a
    • /
    • pp.252-261
    • /
    • 1999
  • The troubles such as slipping, pinching and other behaviors in the service of cold rolling mills often induce thermal shock crack on the surface of work roll, and considerably reduce their service lives. In order to evaluate thermal shock resistibility we use thermal shock tester generating frictional heat caused by a rotating disc contacting with test specimens. Thermal shock produces two heat affected layers below the roll surface, one is rehardened layer and the other is succeeding tempered layer. The maximum depth of crack occurred in a thermal shocked area is a criterion for the thermal shock resistibility. This paper describes on the investigation to the influence of hardness and residual stress.

  • PDF

Evaluation of Thermal Durability of Thermal Barrier Coating and Change in Mechanical Behavior

  • Lee, Dong Heon;Kang, Nam Kyu;Lee, Kee Sung;Moon, Heung Soo;Kim, Hyung Tae;Kim, Chul
    • Journal of the Korean Ceramic Society
    • /
    • v.54 no.4
    • /
    • pp.314-322
    • /
    • 2017
  • This study investigates changes in the mechanical behavior, such as changes in indentation load-displacement curve, wear resistance and contact fatigue resistance of thermal barrier coatings (TBCs) by thermal cycling test and thermal shock test. Relatively dense and porous TBCs on nickel-based bondcoat/superalloy are prepared; the highest temperature applied during thermal durability test is $1350^{\circ}C$. The results indicate that the porous TBCs have relatively longer lifetime during thermal cycling and thermal shock tests, while denser TBCs have relatively higher wear and contact fatigue resistance. The mechanical behavior is influenced by sintering of the TBCs by exposure to high temperature during tests.

A Study on The Degradation Characteristics of MLCCs SAC305 Lead-Free Solder Joints and Growth IMCs by Thermal Shock Test (열충격 시험을 통한 MLCCs SAC305 무연 솔더 접합부의 IMCs 성장과 접합특성 저하에 관한 연구)

  • Jung, Sang-Won;Kang, Min-Soo;Jeon, Yu-Jae;Kim, Do-Seok;Shin, Young-Eui
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.3
    • /
    • pp.152-158
    • /
    • 2016
  • The bonding characteristics of MLCCs (multi layer ceramic capacitor, C1608) lead-free solder (SAC305) joints were evaluated through thermal shock test ($-40^{\circ}C{\sim}125^{\circ}C$, total 1,800 cycle). After the test, IMCs( intermetallic compounds) growth and cracks were verified, also shear strengths were measured for degradation of solder joints. In addition, The thermal stress distributions at solder joints were analyzed to compare the solder joints changes before and after according to thermal shock test by FEA (finite elements analysis). We considered the effects of IMCs growth at solder joints. As results, the bonding characteristics degradation was occurred according to initial crack, crack propagations and thermal stress concentration at solder-IMCs interface, when the IMCs grown to solder inside.

Prediction of thermal shock failure of glass during PDP manufacturing process (PDP 제조 공정시 유리의 열충격 파손 예측)

  • 김재현;최병익;이학주
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.2
    • /
    • pp.122-129
    • /
    • 2004
  • There is an increasing need for large flat panel display devices. PDP (Plasma Display Panel) is one of the most promising candidates for this need. Thermal shock failure of PDP glass during manufacturing process is a critical issue in PDP industry since it is closely related to the product yield and the production speed. In this study, thermal shock resistance of PDP glass is measured by water quenching test and an analysis scheme is described for estimating transient temperature and stress distributions during thermal shock. Based on the experimental data and the analysis results, a simple procedure for predicting the thermal shock failure of PDP glass is proposed. The fast cooling process for heated glass plates can accelerate the speed of PDP production, but often leads to thermal shock failure of the glass plates. Therefore, a design guideline for preventing the failure is presented from a viewpoint of high speed PDP manufacturing process. This design guideline can be used for PDP process design and thermal -shock failure prevention.

A Study on Evaluation of Thermal Shock Damage of Metal Matrix Composite using Ultrasonics (초음파를 이용한 금속복합재료의 열충격 손상 평가 연구)

  • 강문필;이준현
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.04a
    • /
    • pp.31-37
    • /
    • 2000
  • Metal matrix composites(MMCs) are rapidly becoming one of the strongest candidates for structural materials for many high temperature application. Among the high temperature environment, thermal shock is known to cause significant degradation in most MMC system. Therefore, the nondestructive evaluation on thermal shock damage behavior of SiC/A16061 composite has been carried out using ultrasonic surface and SH-waves. For this study, Sic fiber reinforced metal matrix composite specimens fabricated by a squeeze casting technique were thermally cycled in the temperature range 25~$400^{\circ}C$ up to 1000 cycles. Three point bend test was conducted to investigate the effect of thermal shock damage on mechanical properties. The relationship between thermal shock damage behavior and the change of ultrasonic velocity and attenuation were discussed by considering SEM observation of fracture surface.

  • PDF

Changes in the Mechanical Behavior of Thermal Barrier Coatings Caused by Thermal Shock (열충격에 의한 열차폐 코팅재의 기계적 거동 변화)

  • Jang, Bin;Lee, Kee Sung;Kim, Tae Woo;Kim, Chul
    • Korean Journal of Materials Research
    • /
    • v.27 no.1
    • /
    • pp.25-31
    • /
    • 2017
  • This study investigates changes in the mechanical behaviors, especially hardness and indentation load-displacement curves, of thermal barrier coatings (TBCs) brought about by thermal shock. The TBCs on the Nickel-based bondcoat/superalloy was prepared with diameters of 25.4 mm and $600{\mu}m$ thickness. The results of thermal shock cycling test from $1100^{\circ}C$ of the highest temperature indicate that the thermal shock do not influence on the mechanical behavior, but a continuous decrease in porosity and increase in hardness were observed after 1200 thermal shock cycles; these changes are believed to be due to sintering of thermal barrier coating materials. The results that no degradation in the indentation load-displacement curves indicate that the coating shows good thermal shock resistance up to 1200 cycles at $1100^{\circ}C$ in air.

Themal Fatigue Behavior of Alumina Ceramics (알루미나 세라믹스의 열피로 거동)

  • 정우찬;한봉석;이홍림;이형직
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.10
    • /
    • pp.1094-1100
    • /
    • 1998
  • The thermal fatigue behavior of alumina ceramics was investigated by water quenching method. Single-quench thermal shock tests were performed to decide the critical thermal shock temperature difference ($\Delta$Tc) which was found to be 225$^{\circ}C$ Cyclic thermal shock fatigue tests were performed at temperature diff-erences of 175$^{\circ}C$, 187$^{\circ}C$ and 200$^{\circ}C$ respectively. After cyclic thermal shock fatigue test the distributions of retained strength and crack were observed. Retained strength was measured by four point bending method and crack observation method bydye penetration. In terms of the retained strength distribution the critical number of thermal shock cycles(Nc) were 7 for $\Delta$T=200$^{\circ}C$, 35 for $\Delta$T=187$^{\circ}C$ and 180for $\Delta$T=175$^{\circ}C$ respec-tively. In terms of the crack observation the critical number of thermal shock cycles were 5 for $\Delta$T==200$^{\circ}C$ 20 for $\Delta$T==187$^{\circ}C$ and 150 for $\Delta$T=175$^{\circ}C$ respectively. The difference of Nc investigated by two different methods is due to the formation of the longitudinal cracks which had no effect on the four point bending strength. Therefore the thermal fatigue behavior of alumina ceramics could be more accurately described by the crack observation method than the retained strength measurement method.

  • PDF