• 제목/요약/키워드: Thermal recovery

검색결과 536건 처리시간 0.022초

악취성분중 황화합물에 대한 기기분석법의 적용 (Application of Analytical Instrument Method for Determining Level of Malodorous Sulfur Compounds.)

  • 유병태;최종욱;조기찬;이충언;김건흥
    • 환경위생공학
    • /
    • 제14권4호
    • /
    • pp.117-123
    • /
    • 1999
  • The analytical instrument method was applied to analyze malodorous sulfur compounds emitted from industrial fields. Six factories and two sites which release malodorous substances into ambient air were selected to determine the level of hydrogen sulfide($H_2S$), methylmercaptan(MeSH), dimethyl sulfide($Me_2S$), and dimethyl disulfide($Me_2S_2$) using automated thermal desorption system (STD400) and GC-FPD in summer and fall seasons of 1999. The Air sampler for ATD400 uses a small pump to draw sample and a mass flow controller to adjust sample amount without using a dilution apparatus. The trap temperature of ATD400 reached to $-80^{\circ}$ by supplying liquid nitrogen and $H_2S$ can be analyzed under this condition. The recovery rates of $H_2S$, MeSH, $Me_2S$, and $Me_2S_2$ of odorous sulfur compounds standard were shown 98.2%, 93.6%, 98.2%, 99.4% respectively. The concentrations of $Me_2S$ at outside boundary of G market, L factory, and J factory were 0.018ppm, 0.021ppm, 0.032ppm in summer, respectively. The concentration of $H_2S$ at Nanjido landfill was 1.167ppm in summer, but that of $H_2S$ was not detected in fall because of soil covering. The concentration of H2S and $Me_2S_2$ at inside of Chonggye stream were 0.564ppm and 1.045ppm in summer, while those of H2S and Me2S2 were 0.285ppm and 0.465ppm in fall, respectively.

  • PDF

건물의 $CO_2$ 배출 저감 건축기술요소 제안에 관한 연구(공동주택을 중심으로) (A Study on the Proposal of Building Technologies for Reducing $CO_2$ Emission of Buildings(Focused on the Multi-Family Residential Buildings))

  • 이종식;강혜진;박진철;이언구
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2009년도 춘계학술발표대회 논문집
    • /
    • pp.91-96
    • /
    • 2009
  • First, the base model of multi-family residential buildings are selected, and then the $CO_2$ reduction building technologies that are applicable for multi-family residential buildings are induced by analyzing the examples and then an optimal plan for when the $CO_2$ reduction building technologies can be integrated and applied to the base model was formulated. In the results of converting the energy consumption and reduction amount from the building technologies into $CO_2$ emissions to analyze the distribution ratio compared to the entire $CO_2$ emissions; the heat recovery ventilator is 0.5%, the photovoltaic system is $1.9%{\sim}5.9%$, the solar hot water heating system is $6.3%{\sim}13.1%$ and the ge thermal heat-pump system is 39.0% when both heating and hot water heating are applied. An optimally integrated application method for the building technologies is in charge of heating and hot water heating through the geothermal source heat pump system and in charge of the electricity load through the photovoltaic system(45.2%).

  • PDF

Investigation of a best oxidation model and thermal margin analysis at high temperature under design extension conditions using SPACE

  • Lee, Dongkyu;No, Hee Cheon;Kim, Bokyung
    • Nuclear Engineering and Technology
    • /
    • 제52권4호
    • /
    • pp.742-754
    • /
    • 2020
  • Zircaloy cladding oxidation is an important phenomenon for both design basis accident and severe accidents, because it results in cladding embrittlement and rapid fuel temperature escalation. For this reason during the last decade, many experts have been conducting experiments to identify the oxidation phenomena that occur under design basis accidents and to develop mathematical analysis models. However, since the study of design extension conditions (DEC) is relatively insufficient, it is essential to develop and validate a physical and mathematical model simulating the oxidation of the cladding material at high temperatures. In this study, the QUENCH-05 and -06 experiments were utilized to develop the best-fitted oxidation model and to validate the SPACE code modified with it under the design extension condition. It is found out that the cladding temperature and oxidation thickness predicted by the Cathcart-Pawel oxidation model at low temperature (T < 1853 K) and Urbanic-Heidrick at high temperature (T > 1853 K) were in excellent agreement with the data of the QUENCH experiments. For 'LOCA without SI' (Safety Injection) accidents, which should be considered in design extension conditions, it has been performed the evaluation of the operator action time to prevent core melting for the APR1400 plant using the modified SPACE. For the 'LBLOCA without SI' and 'SBLOCA without SI' accidents, it has been performed that sensitivity analysis for the operator action time in terms of the number of SIT (Safety Injection Tank), the recovery number of the SIP (Safety Injection Pump), and the break sizes for the SBLOCA. Also, with the extended acceptance criteria, it has been evaluated the available operator action time margin and the power margin. It is confirmed that the power can be enabled to uprate about 12% through best-estimate calculations.

초음파 처리와 나노클레이 농도가 나노클레이/폴리우레탄 폼의 물성에 미치는 영향 (Influence of Ultrasonic Treatment and Nano-Clay content on the Properties of Nano-Clay/Polyurethane Foam)

  • 허기영;임순호;김대흠
    • Korean Chemical Engineering Research
    • /
    • 제47권2호
    • /
    • pp.208-212
    • /
    • 2009
  • 나노클레이는 높은 종횡비와 불연성, 나노 스케일의 크기로 인해 고분자 나노복합체의 첨가물로 널리 이용되고 있다. 최근엔 나노클레이를 폴리우레탄 폼에 적용함으로써, 열적 특성 및 기계적 특성이 향상되었다는 연구결과들이 있다. 본 연구에서는 폴리우레탄 폼의 물성에 대한 나노클레이의 농도와 초음파 분산의 효과에 대해 기술하였다. 제조된 나노클레이/폴리우레탄 폼의 특성은 복원시간, 압축변형, 셀의 모양 및 인장 실험 등을 통해 분석되었다. 그 결과, 초음파처리는 나노클레이의 분산에 매우 효과적이었고, 소량 첨가 시에는 폼 물성의 향상을 보였으나, 3 wt% 이상의 나노클레이 첨가는 오히려 물성의 저하를 초래함을 확인할 수 있었다. 특히, 초음파를 통해 분산시킨 20A 나노클레이 1 wt%가 첨가된 폴리우레탄 폼이 균일한 셀 사이즈와 뛰어난 치수안정성 등의 가장 최적화된 물성을 나타내었다. 본 연구결과는 건축용 단열재 등의 제조에 적용할 수 있을 것이다.

베이지안 통계학을 이용한 청동기시대 주거지내 화덕자리들의 광자극발광(OSL) 연대 결정 (OSL Age Determination of the Hearths in a Bronze Age Dwelling Site by using Bayesian Statistics)

  • 김명진;양혜진;홍덕균
    • Journal of Radiation Protection and Research
    • /
    • 제36권2호
    • /
    • pp.52-58
    • /
    • 2011
  • 이 연구에서는 소골 유적 29호 및 29-1호 주거지 내부에 사용 시기를 달리하여 존재하는 3개의 화덕자리에 대한 광자극발광(OSL) 연대측정을 수행하였다. 연대측정에 앞서 석영 시료의 자연 OSL 신호 관찰 및 절대영년도 평가를 수행한 결과, OSL 신호는 광이온화 단면적이 커 열과 빛에 매우 민감한 fast 성분만으로 이루어졌으며 청동기인들의 일반적인 난방 및 취사 온도인 $300^{\circ}C$ 이하에서도 완벽히 절대영년 됨을 알 수 있었다. 각 시료의 고고선량은 단일시료재현법을 적용한 재현성 평가와 플래토우 평가로부터 산출되었고, 이를 연간선량율로 나누어 OSL 연대를 결정하였다. 이후 산출된 OSL 연대의 정밀도를 높이기 위하여 발굴조사를 통해 파악된 화덕자리의 사용 시기와 각 화덕자리의 OSL 연대를 베이지안 통계에 적용한 결과, 개별 화덕자리의 사용 및 폐기 시점에 대한 높은 정밀도를 갖는 OSL 연대가 최종적으로 확정되었다.

대기 중 휘발성유기화합물질 및 알데하이드의 분석 신뢰도 향상에 관한 고찰 (Study on Improvement in Reliability of Analysis for VOCs and Aldehydes)

  • 이민도;이상욱;임용재;김영미;김소영;문광주;한진석;정일록
    • 한국대기환경학회지
    • /
    • 제22권4호
    • /
    • pp.468-476
    • /
    • 2006
  • Hazardous air pollutants (HAPs) have high toxicity and bioaccurnulation potentials into human body even inbsmall amount (levels of ng/$m^3$). As the levels of HAPs might be controversial, it has been become essential to establish the analysis method for correct results. In this study, various analysis methods of VOCs and Aldehydes were compared in order to select the proper methods in our condition. Sampling and analysis method of VOCs were followed to EPA TO-14a and TO-17. VOCs were collected in absorption tube and separated by thermal desorption unit then analyzed by GC/MSD. Aldehydes were sampled in DNPH-cartridge and extracted into solution then analyzed by HPLC as the same condition of EPA TO-13a. This study also shows the results of QA/QC system of selected methods. Some experiments could be improving the data assurance blank test, calibration check, repetition precision check, the determination of detection limit and reproducibility of the retention time. Precisions of VOCs and aldehydes were ranged in 2$\sim$9% and 1$\sim$4% RSD, respectively. Recovery rate of VOCs showed variable ranges from 60 to 133.5%. MDL of VOCs and aldehydes were 0.044$\sim$0.284 ppb and 0.14$\sim$1.02 ng, respectively.

계획예방정비가 발전소 공기예열기의 성능에 미치는 영향 (Effect of Preventive Maintenance on Performance of Air Heater in a Power Plant)

  • 장진형;홍은기;황광원;윤린
    • 대한기계학회논문집B
    • /
    • 제34권5호
    • /
    • pp.465-469
    • /
    • 2010
  • 발전설비 내 공기예열기는 보일러 연소가스로부터 열을 회수하여 유효열의 손실을 감소시킴으로서 보일러의 열효율을 높이기 위해 설치된다. 본 연구에서는 계획예방정비가 공기예열기의 성능에 미치는 영향을 고찰하였다. 공기예열기의 성능지표들은 공기예열기의 계획예방정비 전후의 운전 상태와 성능변화 모두를 고려하여 계산되었고, 공기예열기의 중요한 성능지표로는 가스 측 온도효율, 공기누설률, 열회수율, 열관류율과 열용량비들이다. 계획예방정비 전후의 공기예열기 성능평가로부터 공기예열기의 모든 성능 지표가 계획예방정비 후 향상되었다.

SWRO-PRO 복합해수담수화 기술의 현재와 미래 (The present and future of SWRO-PRO hybrid desalination technology development)

  • 정경미;여인호;이원일;오영기;박태신;박용균
    • 상하수도학회지
    • /
    • 제30권4호
    • /
    • pp.401-408
    • /
    • 2016
  • Desalination is getting more attention as an alternative to solve a global water shortage problem in the future. Especially, a desalination technology is being expected as a new growth engine of Korea's overseas plant business besides one of the solutions of domestic water shortage problem. In the past, a thermal evaporation technology was a predominant method in desalination market, but more than 75% of the current market is hold by a membrane-based reverse osmosis technology because of its lower energy consumption rate for desalination. In the future, it is expected to have more energy efficient desalination process. Accordingly, various processes are being developed to further enhance the desalination energy efficiency. One of the promising technologies is a desalination process combined with Pressure Retarded Osmosis (PRO) process. The PRO technology is able to generate energy by using osmotic pressure of seawater or desalination brine. And the other benefits are that it has no emission of $CO_2$ and the limited impact of external environmental factors. However, it is not commercialized yet because a high-performance PRO membrane and module, and a PRO system optimization technology is not sufficiently developed. In this paper, the recent research direction and progress of the SWRO-PRO hybrid desalination was discussed regarding a PRO membrane and module, an energy recovery system, pre-treatment and system optimization technologies, and so on.

Chiral Mesoporous Silica for Asymmetric Metal-free Catalysis: Enhancement of Chirality thorough Confinement Space by Plug Effect

  • 정은영;임청래;박상언
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제41회 하계 정기 학술대회 초록집
    • /
    • pp.199-199
    • /
    • 2011
  • The addition of a carbanion to ${\yen}{\acute{a}}{\yen}{\hat{a}}$-unsaturated carbonyl compounds is of importance in the C-C bond formation reactions for modern pharmaceuticals and organic synthesis. Recently, heterogeneous asymmetric catalysis became more attractive area of research because of the easy recovery and separation of the catalyst from the reaction system. Most of synthetic methods for heterogeneous catalysts were grafting or immobilization of homogeneous catalyst onto the solid supports. Trans-1,2-Diaminocyclohexane(DACH) and L-proline ligands have been enormously used as chiral ligands in several catalytic transformation under homogenous conditions. Our group prepared l-proline functionalized mesoporous silica was synthesized under acidic condition using a poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock copolymer template (EO20PO70EO20, Pluronic P-123, BASF). Furthermore, we successfully directly synthesized trans-1,2 diaminocyclohexane functionalized mesoporous silica by using microwave method. The direct functionalization of chiral ligand into the framework of mesoporous materials is expected to be useful for the heterogeneous asymmetric catalysis. So, we adopt the direct synthesis of chiral ligand functionalized mesoporous silica by using thermal and microwave irradiation. Then, chiral ligand functionalized mesoporous silicas were applied to enantioselective asymmetric catalytic reactions.

  • PDF

소규모 SCW 지중열 시스템의 난방시 지하수 온도 변화 특성에 관한 연구 (A Study on Specific of Ground Water Temperature Changes of the Small Scaled SCW GWHP System in Case of Heating)

  • 양승진;이원호;김주영;홍원화;안창환
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2008년도 하계학술발표대회 논문집
    • /
    • pp.1347-1352
    • /
    • 2008
  • The SCW ground heat pump system releases ground energy from the ground water of ground heat exchanger. In other word, ground water is used to heating through releases ground energy which oneself has. But the thermal efficiency of system is going to down because repetitive process of ground water will lost ground energy in standing column well system and if heating load is continually increase, energy of ground water may be frozen or there are no benefits to use ground energy as it owes just little energy. To solve these problems, there are need to exchange water to the ground heat exchanger then the way will be used to maintain Efficiency continually as the way of to be supplied with fresh ground water into ground heat exchanger. However, this type causes waste of ground water. Therefore it is essential to discharge water to outside timely on a heat exchanger. Therefor through a study, find out the best time to discharge water to outside and exchange water to ground heat exchanger, and propose to the DB of design of the ground heat exchanger.

  • PDF