Influence of Ultrasonic Treatment and Nano-Clay content on the Properties of Nano-Clay/Polyurethane Foam

초음파 처리와 나노클레이 농도가 나노클레이/폴리우레탄 폼의 물성에 미치는 영향

  • Her, Kiyoung (Polymer Materials Laboratory, Department of Chemical Engineering, Kwangwoon University) ;
  • Lim, Soonho (Hybrid materials research center, Korea Institute of Science and Technology) ;
  • Kim, Daeheum (Polymer Materials Laboratory, Department of Chemical Engineering, Kwangwoon University)
  • 허기영 (광운대학교 화학공학과 고분자소재연구실) ;
  • 임순호 (한국과학기술연구원 하이브리드재료연구센터) ;
  • 김대흠 (광운대학교 화학공학과 고분자소재연구실)
  • Received : 2009.02.02
  • Accepted : 2009.03.11
  • Published : 2009.04.30

Abstract

The nano-clay is widely used in polymer-nanocomposites due to the high aspect ratio, heat resistance and nano-scale dimension. In recent researches, the thermal and mechanical properties of polyurethane foam were improved with introducing the nano-clay. In this study, we describe the influence of ultrasonic treatment and content of nano-clay on properties of polyurethane foam. The nano-clay/polyurethane foam were characterized using their recovery time, compressive deflection, cell morphology and tensile test. The ultrasonic treatment was very effective for dispersion of nano-clay. Moreover, we found that introducing over 3 wt% of nano-clay bring the decrease of properties due to the poor dispersion. Expecially, ultrasonically treated 20A/polyurethane foam(1 wt%) showed greatly improved properties, such as homogeneous cell size and good dimension stability. We expect that our results could be applied to insulating materials for construction.

나노클레이는 높은 종횡비와 불연성, 나노 스케일의 크기로 인해 고분자 나노복합체의 첨가물로 널리 이용되고 있다. 최근엔 나노클레이를 폴리우레탄 폼에 적용함으로써, 열적 특성 및 기계적 특성이 향상되었다는 연구결과들이 있다. 본 연구에서는 폴리우레탄 폼의 물성에 대한 나노클레이의 농도와 초음파 분산의 효과에 대해 기술하였다. 제조된 나노클레이/폴리우레탄 폼의 특성은 복원시간, 압축변형, 셀의 모양 및 인장 실험 등을 통해 분석되었다. 그 결과, 초음파처리는 나노클레이의 분산에 매우 효과적이었고, 소량 첨가 시에는 폼 물성의 향상을 보였으나, 3 wt% 이상의 나노클레이 첨가는 오히려 물성의 저하를 초래함을 확인할 수 있었다. 특히, 초음파를 통해 분산시킨 20A 나노클레이 1 wt%가 첨가된 폴리우레탄 폼이 균일한 셀 사이즈와 뛰어난 치수안정성 등의 가장 최적화된 물성을 나타내었다. 본 연구결과는 건축용 단열재 등의 제조에 적용할 수 있을 것이다.

Keywords

References

  1. Choi, S. H., 'Polyol for Polyurethane and Foam,' Polymer Science and Technology, 10(5), 621-628(1999)
  2. Saunders, H. and Frisch, K. C., “Polyurethane: Chemistry and Technology,” High Polymer Series, PartII, Wiley-Interscience, New York(1964)
  3. Kim, Y. J. and Lee, B. C., 'Trend in Polyurethane Industry,' Polymer Science and Technology, 10(5), 589-596(1999)
  4. Kim, S. S. and Park, J. N., 'Industrial Application of Polyurethane,' Polymer Science and Technology, 10(5), 614-620(1999)
  5. Usuki, A., Koiwai, A., Kojima, Y., Kawasumi, M., Okada, A., Kurauchi, T. and Kamigaito, O., "Interaction of Nylon 6-Clay Surface and Mechanical Properties of Nylon 6-Clay Hybrid," J. Appl. Polym. Sci., 55, 119-123(1995) https://doi.org/10.1002/app.1995.070550113
  6. Osman, M. A., Mittal, V., Morbidelli, M. and Suter, U. W., "Polyurethane Adhesive. Nanocomposites as Gas Permeation Barrier," Macromolecules, 36, 9851-9858(2003) https://doi.org/10.1021/ma035077x
  7. Yang, Y., Gupta, M. C., Zalameda, J. N. and Winfree, W. P., "Dispersion Behaviour, Thermal and Electrical Conductivities of Carbon Nanotube-polystyrene Nanocomposites," Micro & Nano Letters, 3(2), 35-40(2008) https://doi.org/10.1049/mnl:20070073
  8. Imai, Y., Nishimura, S., Abe, E., Tateyama, H., Abiko, A., Yamaguchi, A., Aoyama, T. and Taguchi, H., "High-Modulus Poly(ethylene terephthalate)/Expandable Fluorine Mica Nanocomposites with a Novel Reactive Compatibilizer," Chem. Mater., 14, 477-79(2002) https://doi.org/10.1021/cm010408a
  9. Harikrishnan, G., Patro, T. U. and Khakhar, D. V., "Polyurethane Foam-Clay Nanocomposites: Nanoclays as Cell Openers," Ind. Eng. Chem. Res., 45, 7126-7134(2006) https://doi.org/10.1021/ie0600994
  10. Song, J. G., Zhang, L.-M., Li, J. G. and Song, J. R., "Influence of Ultrasonic on the Dispersibility of ZrB2 Particles," Materials and Manufacturing Processes, 23, 98-101(2008) https://doi.org/10.1080/10426910701524683
  11. Schallamach, A., 'Ultrasonic Dispersion in Organic Liquids,' Nature, 161, 476-476(1948) https://doi.org/10.1038/161476a0
  12. Kim, D., Park, S. and Yeo, S., 'Synthesis of Oxyethlyene Modified Silixoane Surfactants for Polyurethane Foam and the Characteristics of Fine Cell Formation,' J. Korean Ind. Eng. Chem., 17(3), 260-266(2006)
  13. Wang, Y., Gao, J., Ma, Y. and Agarwal, U. S., "Study on Mechanical Properties, Thermal Stability and Crystallization Behavior of PET/MMT Nanocomposites," Composites: Part B, 37, 399-407 (2006) https://doi.org/10.1016/j.compositesb.2006.02.014