• Title/Summary/Keyword: Thermal performance according

Search Result 660, Processing Time 0.021 seconds

Evaluation of the Thermal Performance and Condensation Resistance of a Steel Frame Curtain Wall System (스틸 커튼월의 단열성능 및 결로방지성능 평가)

  • Kim, Sun Sook;Cho, Bong Ho
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.3
    • /
    • pp.51-57
    • /
    • 2013
  • Metal curtain wall systems are widely used in high-rise commercial and residential buildings. While aluminum is the most frequent used frame material, steel framing is also reemerging as a high-performance material in glazed curtain walls due to less thermal conductivity and design flexibility. The purpose of this study is to evaluate thermal performance of a steel frame curtain wall system by comparing with a aluminum frame curtain wall system. The thermal transmittance was measured according to KS 2278, and condensation resistance was calculated by the test results according to KS F 2295. The steel framing test specimen showed lower thermal transmittance and temperature descending factor compared to the aluminum framing test specimen.

The Change of Heating and Cooling Load according to the Thermal Insulation Performance of Window for an Apartment House (창호의 단열성능에 따른 공동주택 냉난방 부하량 변화)

  • Song, Su-Bin;Kim, Young-Tag;Yoon, Seong-Hwan
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.853-856
    • /
    • 2008
  • Windows have an great effect on annual building load because windows are the weakest parts of building envelope thermally. To reduce the consumption of building energy, the thermal performance of window has to be improved in first place. Therefore this research aims to make a quantitative analysis of the heating and cooling load according to the window thermal performance using the heat load simulation program. As a result of the simulation, annual heat load is down 38% according to the decrease of U-value of window, 1.00 W/$m^2K$. and annual heat load is up 10% according to the decrease of shading coefficient, 0.20. The annual load of the window with Low-E glass is 15% lower than the window with pair glass.

  • PDF

An Experimental Study on Ventilation and Thermal Performance of Passive Ventilation Building Envelopes (패시브환기외피의 통기 및 열성능에 관한 실험적 연구)

  • Yoon, Seong-Hwan;Lee, Tae-Cheol;Kang, Jung-Sik
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.11
    • /
    • pp.711-717
    • /
    • 2011
  • In this study, 5 types of PVS(Passive ventilation system) units are made and experimented its ventilation performance, thermal performance according to open rate and hole diameter of perforated aluminum plane. Results are as follows. 1) The ventilation performance increases approximately 50~70% according by the open rate of PVS increasing. Also, the ventilation performance increases about 2%~12% according by the hole diameter of PVS increasing. 2) In winter temperature/pressure condition(in : $20^{\circ}C$, out : $-2^{\circ}C/{\Delta}P$ : 0.2~5.0Pa) the temperature of inflow air decreases according by the open rate of PVS increasing. Heat gain performance decreases 10.1%, 25.6% when open rate increases 3) In the same condition, Heat gain performance decreases 18.3%, 18.8% according by the hole diameter of PVS increasing.

The Effect of the Attached Glazing and Windbreak on the Thermal Performance and Air Tightness of Sliding window (덧유리 및 방풍재 적용을 통한 슬라이딩 창의 단열 및 기밀성능 개선효과 분석)

  • Bae, Min-Jung;Kang, Jae-Sik;Choi, Gyeong-Seok;Choi, Hyung-Joung
    • KIEAE Journal
    • /
    • v.17 no.4
    • /
    • pp.59-65
    • /
    • 2017
  • Purpose: Thermal performance and air tightness of window are improved for the building energy efficiency. As the deteriorated houses are increased, the improve measures with low cost and easy installation are developed in the energy performance of window. Attached glazing and windbreak can be easily applied to the window with low cost. In this paper, the effect of the attached glazing and windbreak on the thermal performance and air tightness of window is analyzed as the measure to improve performance of window. Method: Thermal transmittance of glazing is evaluated through WINDOW simulation according to thickness of attached glazing and air cavity. Based on the simulation results, thermal transmittance, air tightness and condensation resistance performance of four cases are tested according to Korea standards. One type of PVC sliding double window is chosen as the specimen. For the analysis on low performance of window, the outside of window is excluded in the PVC sliding double window. Result: This study shows that thermal performance of glazing can be increased by the application of attached glazing. Furthermore, lower thermal performance of glazing can obtain the higher effect of attached glazing. The application of attached glazing and windbreak can effect on increasing thermal performance and air tightness of window.

An Experimental Study on the Characteristic of Thermal Performance according to Feed Water Conditions to of Vacuum Membrane Distillation Module using PVDF Hollow Fiber (PVDF 중공사막을 이용한 진공 막 증류 모듈의 공급수 조건에 따른 열성능 특성에 관한 실험적 연구)

  • Joo, Hongjin;Kwak, Heeyoul
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.31 no.4
    • /
    • pp.339-346
    • /
    • 2017
  • In this study, thermal performance test of VMD module was performed, prior to the construction of the demonstration plant using the vacuum membrane distillation (VMD) module of the capacity of $400m^3/day$ and to the commercialization of the VMD module. For the thermal performance test, the experimental equipment of capacity of $2m^3/day$ was constructed. The permeate flux test and thermal performance test according to feed water conditions such as temperature and flow rate were conducted. The VMD module used in the study was manufactured by ECONITY Co., LTD with PVDF hollow fiber membrane. As a result, the Performance Ratio (PR) of the VMD module showed the maximum value of 0.904 under the condition of feed water temperature of $75^{\circ}C$ and flow rate of $8m^3/h$. PR value of the VMD module using PVDF hollow fiber membrane showed linearly increasing relationship with feed water temperature and flow rate. Also, The permeate flux of the VMD module was analyzed to have maximum value of 18.25 LMH and the salt rejection was 99.99%.

The Thermal Performance of Building Insulation Materials According to Long-Term Aging (건축용 단열재의 장기 경시변화에 따른 열성능 특성)

  • Choi, Bo-Hye;Kang, Jae-Sik
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.11
    • /
    • pp.617-623
    • /
    • 2013
  • This study is to draw thermal property data during long-term aging, by testing the thermal conductivity of building insulation materials in Korea. The thermal resistance of extruded insulation within 3 days from manufacture performed well over the KS Standard. After 50 to 110 days, however, the thermal performance had deteriorated to the level of the KS standard. Eventually, after 4,000 days, the insulation performance had deteriorated to about 25.4~41.8% of the initial performance. Therefore, this research will be utilized as a reference for thermal properties during long-term aging, in order to improve standards and regulations related to building insulation materials.

Insulation Properties of CLC according to Mixing Ratio of EPS Bead (EPS Bead 혼입비율에 따른 CLC의 단열특성)

  • Lee, Jeong-Taek;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.45-46
    • /
    • 2023
  • CLC is used as a filling material for many buildings, and according to energy saving design standards, CLC also requires insulation performance. However, it shows lower insulation performance compared to organic insulation, so additional research is needed. Therefore, in this study, the insulation properties of CLC were analyzed by incorporating EPS beads with high insulation performance into CLC. In this experiment, EPS beads and blast furnace slag were replaced, and W/B was fixed at 33%. The EPS Bead mixing ratio was divided into 5 levels: 0, 0.5, 1.0, 1.5, 2.0 (%), and the experimental items were measured for apparent density and thermal conductivity. As a result of the experiment, the apparent density and thermal conductivity tended to decrease as the mixing ratio of EPS beads increased. It is judged that the density decreased due to the low density and the micropores inside, and the thermal conductivity also decreased.

  • PDF

Sensitive analysis of design factor for the optimum design of PVT system

  • Jeong, Yong-Dae;Nam, Yujin
    • KIEAE Journal
    • /
    • v.15 no.4
    • /
    • pp.5-11
    • /
    • 2015
  • Purpose: Recently, renewable energy system has been widely used to reduce the energy consumption and CO2 emission of building. A photovoltaic/thermal(PVT) system is a kind of efficient energy uses, which is combined with photovoltaic module and solar thermal collector. PVT system removes heat from PV module by through thermal fluid to raise the performance efficiency of the PV system. However, though PVT system has the merit of the improved efficiency in theoretical approach, there have been few performance analysis for PVT system using the dynamic energy simulation. In this study, in order to establish the optimum design method of this system, simulation was conducted by using individual system modules. Method: For the dynamic simulation, TRNSYS17 was used and local weather data was utilized. Furthermore, the system performance in various installation condition was calculated by case studies. Result: As a result, the amount of electric generation and heat production in each case was found by the simulation. The gap of system performance was also evident according to the installation condition.

A Study on Performance of Flat Water-type PVT Modules According to Absorber Type (흡열판의 종류에 따른 Unglazed PVT 모듈의 성능 실험 분석)

  • Chun, Jin-Aha;Jeong, Seon-Ok;Kim, Jin-Hee;Kim, Jun-Tae;Cho, In-Soo;Nam, Seung-Baeg
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.93-98
    • /
    • 2011
  • A photovoltaic/thermal(PVT)collector produces both thermal energy and electricity simultaneously. The heat from PV modules should be removed for better electrical performance, and can be converted into useful thermal energy. A PVT module is a combination of PV module with a solar thermal collector which forms one device that converts solar radiation into electricity and heat. In general, there are two different types of PVT module: glazed PVT module and unglazed PVT module. On the other hand, two types of the PVT module can be distinguished according to absorber on PV module rear side: the sheet-and-tube absorber PVT module and the fully wetted absorber PVT module. The absorber collector plays an important function in PVT system. It cools down the PV module, while collecting the thermal energy produced in the form of hot water. The aim of this study is to compare the electrical and thermal performance of two different PVT collectors, one with the rectangular tube and the other with fully wetted absorber PVT collectors. For this paper, the PVT collectors with two different types of thermal absorber were made, and both the thermal and electrical performance of them were measured in outdoor, and the results were compared. The experimental results were analyzed that the thermal efficiency of the fully wetted absorber PVT collector is about 8.7% higher than the sheet-and-tube absorber PVT collector, and for the electrical efficiency, the fully wetted absorber PVT collector had about 7% higher than the rectangular tube absorber.

  • PDF

A Study on Thermal & Electrical Performance of Glazings with DSC modules (염료감응태양전지(DSC)를 적용한 Glazing의 구성에 따른 단열 및 전기 성능 분석)

  • kim, Ji-Seong;Park, Se-Hyeon;Kang, Jun-Gu;Kim, Jun-Tae
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.158-163
    • /
    • 2011
  • Recently, more attention has been paid to DSC(Dye-sensitized Solar Cell) with the potential of glazing applications. The aim of the study is to analyze thermal and electrical performance according to composition of glazing with DSC. For this study, the electrical and thermal performance of glazing with DSC modules were measured and their result were compared. The measurement were performed according to the KS L2525 and with a solar simulator of DSC modules. The result show that the U-value of the DSC double glazings with clear glass and low-e glass were 2.78 $W/m^2K$ and 1.70 $W/m^2K$, respectively. The electrical measurement indicated that the electrical efficiency of the DSC double glazings with clear glass and low-e glass decreaced by 9.9% and 13.3%, respectively, compared to the DSC medules electrical performance.

  • PDF