• 제목/요약/키워드: Thermal interface material

검색결과 291건 처리시간 0.032초

리플로 납땜과정에서 플라스틱 IC 패키지의 박리방지를 위한 응력최적설계의 적용 (Application of Stress Optimization for Preventing the Delamination of the Plastic IC Package in Reflow Soldering Process)

  • 김근우;이강용;김옥환
    • 대한기계학회논문집A
    • /
    • 제28권6호
    • /
    • pp.709-716
    • /
    • 2004
  • In order to prevent the interface delamination of an plastic IC package in the infrared (IR) soldering process, we tried to reduce stress by parameterization, sensitivity analysis and unconstraint optimization. The design variables of dimensions and material properties are determined among all the possible variables from the parametric study. Their optimized values are determined by applying the unconstraint optimization to the parameterized IC package. The maximum von-Mises stress value decreases greatly by optimum design.

Graphene: an emerging material for biological tissue engineering

  • Lee, Sang Kyu;Kim, Hyun;Shim, Bong Sup
    • Carbon letters
    • /
    • 제14권2호
    • /
    • pp.63-75
    • /
    • 2013
  • Graphene, a carbon crystal sheet of molecular thickness, shows diverse and exceptional properties ranging from electrical and thermal conductivities, to optical and mechanical qualities. Thus, its potential applications include not only physicochemical materials but also extends to biological uses. Here, we review recent experimental studies about graphene for such bioapplications. As a prerequisite to the search to determine the potential of graphene for bioapplications, the essential qualities of graphene that support biocompatibility, were briefly summarized. Then, direct examples of tissue regeneration and tissue engineering utilizing graphenes, were discussed, including uses for cell scaffolds, cell modulating interfaces, drug delivery, and neural interfaces.

금속절삭시 CHIP 생성기구 및 절삭온도 예측을 위한 유한요소해석에 관한 연구

  • 황준;남궁석
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1993년도 추계학술대회 논문집
    • /
    • pp.22-27
    • /
    • 1993
  • The finite element method is applied to analyze the mechanism of metal cutting. This paper introduces some effects, such constitutive deformation laws of workpiece material, friction of tool-chip contact interfaces, tool rake angles and also simulate the cutting process, chip formation and geometry, tool-chip contact, reaction force of tool, cutting temperature. Under the usual [lane strain assumption, quasi-static analysis were performed with variation of tool-chip interface friction coefficients and rake angles. In this analysis, various cutting speeds and depth of cut are adopted. Some cutting parameters are affected to cutting force, plastic deformation of chip, shear plane angle, chip thickness and tool-chip contact length and reaction forces on tool. Cutting temperature and Thermal behavior. Several aspects of the metal cutting process predicted by the finite element analysis provide information about tool shape design and optimal cutting conditions.

TiNi/Al 6061 형상기억 복합재료의 강도해석 모듈 개발 (Development of Strength Analysis Modules for TiNi/Al 6061 Shape Memory Alloy)

  • 이동화;박영철;박동성;이규창
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.692-696
    • /
    • 2001
  • Thermo-mechanical behavior and mechanical properties of intelligent polymer matrix composite with SMA fiber are experimentally studied. It is found that increments of compressive thermal strain is observed as the pre-strain and TiNi volume fraction increase. The smartness of the SMA is given due to the shape memory effect of the TiNi fiber which generates compressive residual stress in the matrix material when heated after being prestrained. In the paper, alloy is based on the general purpose commercial code ANSYS. And for the purpose of easy and fast user's analysis, it is developed the Graphical User Interface by using Tcl/Tk language.

  • PDF

Magnetic Effects of La0.67Sr0.33MnO3 on W-C-N Diffusion Barrier Thin Films

  • Song, Moon-Kyoo;So, Ji-Seop;Shim, In-Bo;Lee, Chang-Woo
    • 한국자기학회지
    • /
    • 제15권2호
    • /
    • pp.133-136
    • /
    • 2005
  • In the case of contacts between semiconductor and metal in semiconductor devices, they tend to be unstable because of thermal budget. To prevent these problems we deposited W-C-N diffusion barrier for preventing the interdiffusion between metal and semiconductor. The thickness of the barrier is $1,000{\AA}$ and the pressure is 3 mTorr during the deposition. In this work we coated LSMO (CMR material) on W-C-N diffusion barrier and then we studied the interface effects between LSMO layer and W-C-N diffusion barrier. We got results that the magnetic characteristics of LSMO thin film are still maintained after annealing at $800^{\circ}C$ for 3 hr because W-C-N thin diffusion barrier was prevented the diffusion of oxygen between LSMO and Si substrate.

저온소성 기판과 Cu와의 동시소성에 미치는 CuO의 첨가효과 (The Influence of CuO on Bonding Behaviors of Low-Firing-Substrate and Cu Conductor)

  • 박정현;이상진
    • 한국세라믹학회지
    • /
    • 제31권4호
    • /
    • pp.381-388
    • /
    • 1994
  • A new process which co-fires the low-firing-substrate and copper conductor was studied to achieve good bond strength and low sheet resistance of conductor. Cupric oxide is used as the precursor of conductive material in the new method and the firing atmosphere of the new process is changed sequently in air H2N2. The addition of cupric oxide and variations of firing atmosphere permited complete binder-burnout in comparison with the conventional method and contributed to the improvement of resistance and bonding behaviors. The potimum conditions of this experiment to obtain the satisfactory resistance and bond strength are as follows (binder-burnout temperature in air; 55$0^{\circ}C$, reducing temperature in H2; 40$0^{\circ}C$ for 30 min, ratio of copper and cupric oxide; 60:40~30:70 wt%). The bonding mechanism between the substrate and metal was explained by metal diffusion layer in the interface and the bond strength mainly depended on the stress caused by the difference of shrinkage and thermal expansion coefficient between the substrate and metal.

  • PDF

Performance improvements of organic solar cell using dual cathode buffer layers

  • Sachdeva, Sheenam;Kaur, Jagdish;Sharma, Kriti;Tripathi, S.K.
    • Current Applied Physics
    • /
    • 제18권12호
    • /
    • pp.1592-1599
    • /
    • 2018
  • The present study deals with the effect of dual cathode buffer layer (CBL) on the performance of bilayer of 4,4'-cyclohexylidenebis[N,N-bis(4-methylphenyl)benzenamine] (TAPC) and fullerene (C70)-based organic solar cell (OSC) with low donor concentration. OSC devices with CBLs have been fabricated using thermal vapor deposition technique. We report the use of lithium fluoride (LiF) and molybdenum trioxide ($MoO_3$) as CBLs. The insertion of LiF between C70 and aluminium (Al) electrode enhances the power conversion efficiency (PCE) of device from 1.89% to 2.47% but quenching of photogenerated excitons is observed at interface of C70 and LiF layers. Incorporation of $MoO_3$ between LiF and Al electrode further enhances PCE of device to 3.51%. This has also improved the material quality and device properties, by preventing the formation of gap states and diminishing exciton quenching.

Pt/$LiNbO_3$/AIN/Si(100) 구조의 전기적 특성 (Electrical Properties of Pt/$LiNbO_3$/AIN/Si(100) structures)

  • 정순원;정상현;인용일;김광호
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 하계학술대회 논문집
    • /
    • pp.58-61
    • /
    • 2001
  • Metal-insulator-semiconductor (MIS) C-V properties with high dielectric AIN thin films showed no hysteresis and good interface properties. The dielectric constant of the AIN film calculated from the capacitance at the accumulation region in the capacitance-voltage(C-V) characteristics was about 8. The C-V characteristics of MFIS capacitor showed a hysteresis loop due to the ferroelectric nature of the LiNbO$_3$ thin films. Typical dielectric constant value of LiNbO$_3$ film of MFIS device was about 23. The memory window width was about 1.2V at the gate voltage of $\pm$5 V ranges. Typical gate leakage current density of the MFIS structure was the order of 10$^{-9}$ A/cm$^2$ at the range of within $\pm$500 kV/cm. The ferroelectric capacitors showed no polarization degradation up to about 10$^{11}$ switching cycles when subjected to symmetric bipolar voltage pulse(peak-to-peak 8V, 50% duty cycle) in the 500kHz.

  • PDF

에폭시 복합체의 TSC특성파 구조변화사이의 상관성 연구 (A Study on The Relationship between TSC Properties and Structural Changes of Epoxy Composites Materials)

  • 왕종배;박준범;박경원;신철기;이준웅
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1993년도 추계학술대회 논문집
    • /
    • pp.75-79
    • /
    • 1993
  • The Thermally Stimulated Current(TSC) method has been allied to study the influence of the structural change and interface on the electrical properties of epoxy composites. Three DGBA- MeTHPA matrix model samples mixed different ratios arts silica(SiO$_2$) filled sample and silaln treating-filled sample have been studied. Above room temperature, the relaxation mode ${\alpha}$ peak associated with T$\_$g/ has been located at 110$^{\circ}C$. Below glass transition temperature(T$\_$g/), three relaxation modes are observed in all samples : a ${\beta}$ mode situated at 10$^{\circ}C$, a ${\gamma}$ mode located at -40$^{\circ}C$ and a $\delta$mode appeared in -120$^{\circ}C$, which may be due to segmental motion, side chains, substitution and terminal groups. The analysis of its fine structure indicates that constitution of elementary processes is characterized by the activation energy and relaxation time. Also the change of the molecular structure and their thermal motion are compared with the relaxation mode and conduction mechanism in TSC spectra through the dielectric properties and FTIR measurements.

  • PDF

초음파 분무 열분해법으로 제초한 ZnO막의 전기적, 구조적 특성에 미치는 In첨가 효과 (In-doping effects on the Structural and Electrical Properties of ZnO Films prepared by Ultrasonic Spray Pyrolysis)

  • 심대근;양영신;마대영
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 하계학술대회 논문집
    • /
    • pp.1010-1013
    • /
    • 2001
  • Zinc oxide(ZnO) films were prepared by ultrasonic spray pyrolysis on indium (In) films deposited by evaporation and subsequently submitted to rapid thermal annealing (RTA). The RTA was processed in air or a vacuum ambient. The crystallographic properties and surface morphologies of the films were characterized before and after the RTA by X-ray diffraction (XRD) and scanning electron microscopy(SEM), respectively. The resistivity variation of the films with RTA temperature and time was measured by the 4-point probe method. Auger electron spectroscopy(AES) was carried out to figure out the distribution of indium atoms in the ZnO films. The resistivity of the ZnO on In(ZnO/In) films decreased to 2${\times}$10$\^$-3/ $\Omega$cm by diffusion of the In. The In diffusion into the ZnO films roughened the surface of the ZnO films. The results of depth profile by AES showed a hump of In atoms around ZnO/In interface after the RTA at 800$^{\circ}C$, which disappeared by the RTA at 1000$^{\circ}C$. The effects of temperature, time and ambient during the RTA on the structural and electrical properties of the ZnO/In films were discussed.

  • PDF