Browse > Article
http://dx.doi.org/10.5714/CL.2013.14.2.063

Graphene: an emerging material for biological tissue engineering  

Lee, Sang Kyu (Department of Chemical Engineering, Inha University)
Kim, Hyun (Department of Chemical Engineering, Inha University)
Shim, Bong Sup (Department of Chemical Engineering, Inha University)
Publication Information
Carbon letters / v.14, no.2, 2013 , pp. 63-75 More about this Journal
Abstract
Graphene, a carbon crystal sheet of molecular thickness, shows diverse and exceptional properties ranging from electrical and thermal conductivities, to optical and mechanical qualities. Thus, its potential applications include not only physicochemical materials but also extends to biological uses. Here, we review recent experimental studies about graphene for such bioapplications. As a prerequisite to the search to determine the potential of graphene for bioapplications, the essential qualities of graphene that support biocompatibility, were briefly summarized. Then, direct examples of tissue regeneration and tissue engineering utilizing graphenes, were discussed, including uses for cell scaffolds, cell modulating interfaces, drug delivery, and neural interfaces.
Keywords
graphene; graphene oxide; carbon nanomaterials; tissue engineering; cell scaffolds; drug delivery; neural interface; biomaterials; biocompatibility;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Guo SJ, Dong SJ. Graphene nanosheet: synthesis, molecular engineering, thin film, hybrids, and energy and analytical applications. Chem Soc Rev, 40, 2644 (2011). http://dx.doi.org/10.1039/c0cs00079e.   DOI   ScienceOn
2 Shao YY, Wang J, Wu H, Liu J, Aksay IA, Lin YH. Graphene based electrochemical sensors and biosensors: a review. Electroanalysis, 22, 1027 (2010). http://dx.doi.org/10.1002/elan.200900571.   DOI   ScienceOn
3 Wassei JK, Kaner RB. Graphene, a promising transparent conductor. Mater Today, 13, 52 (2010). http://dx.doi.org/10.1016/S1369-7021(10)70034-1.   DOI   ScienceOn
4 Wan XJ, Long GK, Huang L, Chen YS. Graphene: a promising material for organic photovoltaic cells. Adv Mater, 23, 5342 (2011). http://dx.doi.org/10.1002/adma.201102735.   DOI   ScienceOn
5 Pang SP, Hernandez Y, Feng XL, Mullen K. Graphene as transparent electrode material for organic electronics. Adv Mater, 23, 2779 (2011). http://dx.doi.org/10.1002/adma.201100304.   DOI   ScienceOn
6 Moon JS, Antcliffe M, Seo HC, Lin SC, Schmitz A, Milosavljevic I, McCalla K, Wong D, Gaskill DK, Campbell PM, Lee KM, Asbeck P. Graphene review: an emerging RF technology. Proceedings of the IEEE 12th Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems, Santa Clara, CA, 199 (2012). http://dx.doi. org/10.1109/SiRF.2012.6160170.   DOI
7 Dreyer DR, Park S, Bielawski CW, Ruoff RS. The chemistry of graphene oxide. Chem Soc Rev, 39, 228 (2010). http://dx.doi. org/10.1039/b917103g.   DOI   ScienceOn
8 Stolyarova E, Rim KT, Ryu S, Maultzsch J, Kim P, Brus LE, Heinz TF, Hybertsen MS, Flynn GW. High-resolution scanning tunneling microscopy imaging of mesoscopic graphene sheets on an insulating surface. Proc Natl Acad Sci USA, 104, 9209 (2007). http:// dx.doi.org/10.1073/pnas.0703337104.   DOI   ScienceOn
9 Emtsev KV, Bostwick A, Horn K, Jobst J, Kellogg GL, Ley L, McChesney JL, Ohta T, Reshanov SA, Rohrl J, Rotenberg E, Schmid AK, Waldmann D, Weber HB, Seyller T. Towards wafersize graphene layers by atmospheric pressure graphitization of silicon carbide. Nat Mater, 8, 203 (2009). http://dx.doi.org/10.1038/nmat2382.   DOI   ScienceOn
10 Kim KS, Zhao Y, Jang H, Lee SY, Kim JM, Ahn JH, Kim P, Choi JY, Hong BH. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature, 457, 706 (2009). http:// dx.doi.org/10.1038/nature07719.   DOI   ScienceOn
11 Li D, Muller MB, Gilje S, Kaner RB, Wallace GG. Processable aqueous dispersions of graphene nanosheets. Nat Nanotechnol, 3, 101 (2008). http://dx.doi.org/10.1038/nnano.2007.451.   DOI   ScienceOn
12 He HY, Klinowski J, Forster M, Lerf A. A new structural model for graphite oxide. Chem Phys Lett, 287, 53 (1998). http://dx.doi. org/10.1016/s0009-2614(98)00144-4.   DOI   ScienceOn
13 Poland CA, Duffin R, Kinloch I, Maynard A, Wallace WAH, Seaton A, Stone V, Brown S, MacNee W, Donaldson K. Carbon nanotubes introduced into the abdominal cavity of mice show as-bestos-like pathogenicity in a pilot study. Nat Nanotechnol, 3, 423 (2008). http://dx.doi.org/10.1038/nnano.2008.111.   DOI   ScienceOn
14 Singh V, Joung D, Zhai L, Das S, Khondaker SI, Seal S. Graphene based materials: past, present and future. Prog Mater Sci, 56, 1178 (2011). http://dx.doi.org/10.1016/j.pmatsci.2011.03.003.   DOI   ScienceOn
15 Zhang XY, Yin JL, Peng C, Hu WQ, Zhu ZY, Li WX, Fan CH, Huang Q. Distribution and biocompatibility studies of graphene oxide in mice after intravenous administration. Carbon, 49, 986 (2011). http://dx.doi.org/10.1016/j.carbon.2010.11.005.   DOI   ScienceOn
16 Mutlu GkM, Budinger GRS, Green AA, Urich D, Soberanes S, Chiarella SE, Alheid GF, McCrimmon DR, Szleifer I, Hersam MC. Biocompatible nanoscale dispersion of single-walled carbon nanotubes minimizes in vivo pulmonary toxicity. Nano Lett, 10, 1664 (2010). http://dx.doi.org/10.1021/nl9042483.   DOI   ScienceOn
17 Yang K, Wan J, Zhang S, Zhang Y, Lee ST, Liu Z. In vivo pharmacokinetics, long-term biodistribution, and toxicology of PEGylated graphene in mice. ACS Nano, 5, 516 (2010). http://dx.doi. org/10.1021/nn1024303.   DOI   ScienceOn
18 Park S, Mohanty N, Suk JW, Nagaraja A, An JH, Piner RD, Cai WW, Dreyer DR, Berry V, Ruoff RS. Biocompatible, robust free-standing paper composed of a TWEEN/graphene composite. Adv Mater, 22, 1736 (2010). http://dx.doi.org/10.1002/adma.200903611.   DOI   ScienceOn
19 Kalbacova M, Broz A, Kong J, Kalbac M. Graphene substrates promote adherence of human osteoblasts and mesenchymal stromal cells. Carbon, 48, 4323 (2010). http://dx.doi.org/10.1016/j.carbon.2010.07.045.   DOI   ScienceOn
20 Guo CX, Zheng XT, Lu ZS, Lou XW, Li CM. Biointerface by cell growth on layered graphene-artificial peroxidase-protein nanostructure for in situ quantitative molecular detection. Adv Mater, 22, 5164 (2010). http://dx.doi.org/10.1002/adma.201001699.   DOI   ScienceOn
21 Park SY, Park J, Sim SH, Sung MG, Kim KS, Hong BH, Hong S. Enhanced differentiation of human neural stem cells into neurons on graphene. Adv Mater, 23, H263 (2011). http://dx.doi. org/10.1002/adma.201101503.   DOI   ScienceOn
22 Ryoo SR, Kim YK, Kim MH, Min DH. Behaviors of NIH-3T3 fibroblasts on graphene/carbon nanotubes: proliferation, focal adhesion, and gene transfection studies. ACS Nano, 4, 6587 (2010). http://dx.doi.org/10.1021/nn1018279.   DOI   ScienceOn
23 Hu W, Peng C, Luo W, Lv M, Li X, Li D, Huang Q, Fan C. Graphene-based antibacterial paper. ACS Nano, 4, 4317 (2010). http:// dx.doi.org/10.1021/nn101097v.   DOI   ScienceOn
24 Chang Y, Yang ST, Liu JH, Dong E, Wang Y, Cao A, Liu Y, Wang H. In vitro toxicity evaluation of graphene oxide on A549 cells. Toxicol Lett, 200, 201 (2011). http://dx.doi.org/10.1016/j.toxlet.2010.11.016   DOI   ScienceOn
25 Li N, Zhang X, Song Q, Su R, Zhang Q, Kong T, Liu L, Jin G, Tang M, Cheng G. The promotion of neurite sprouting and outgrowth of mouse hippocampal cells in culture by graphene substrates. Biomaterials, 32, 9374 (2011). http://dx.doi.org/http://dx.doi.org/ 10.1016/j.biomaterials.2011.08.065.   DOI   ScienceOn
26 Sayyar S, Murray E, Thompson BC, Gambhir S, Officer DL, Wallace GG. Covalently linked biocompatible graphene/polycaprolactone composites for tissue engineering. Carbon, 52, 296 (2013). http://dx.doi.org/10.1016/j.carbon.2012.09.031.   DOI   ScienceOn
27 Fan HL, Wang LL, Zhao KK, Li N, Shi ZJ, Ge ZG, Jin ZX. Fabrication, mechanical properties, and biocompatibility of graphenereinforced chitosan composites. Biomacromolecules, 11, 2345 (2010). http://dx.doi.org/10.1021/bm100470q.   DOI   ScienceOn
28 Lim HN, Huang NM, Lim SS, Harrison I, Chia CH. Fabrication and characterization of graphene hydrogel via hydrothermal approach as a scaffold for preliminary study of cell growth. Int J Nanomed, 6, 1817 (2011). http://dx.doi.org/10.2147/ijn.s23392.   DOI
29 Chen GY, Pang DWP, Hwang SM, Tuan HY, Hu YC. A graphene-based platform for induced pluripotent stem cells culture and differentiation. Biomaterials, 33, 418 (2012). http://dx.doi.org/10.1016/j.biomaterials.2011.09.071.   DOI   ScienceOn
30 Yang G, Su J, Gao J, Hu X, Geng C, Fu Q. Fabrication of well-controlled porous foams of graphene oxide modified poly(propylenecarbonate) using supercritical carbon dioxide and its potential tissue engineering applications. J Supercrit Fluids, 73, 1 (2013). http://dx.doi.org/10.1016/j.supflu.2012.11.004.   DOI   ScienceOn
31 Wang Y, Lee WC, Manga KK, Ang PK, Lu J, Liu YP, Lim CT, Loh KP. Fluorinated graphene for promoting neuro-induction of stem cells. Adv Mater, 24, 4285 (2012). http://dx.doi.org/10.1002/adma.201200846.   DOI   ScienceOn
32 Ku SH, Park CB. Myoblast differentiation on graphene oxide. Biomaterials, 34, 2017 (2013). http://dx.doi.org/10.1016/j.biomaterials.2012.11.052.   DOI   ScienceOn
33 Sebaa M, Nguyen TY, Paul RK, Mulchandani A, Liu H. Graphene and carbon nanotube-graphene hybrid nanomaterials for human embryonic stem cell culture. Mater Lett, 92, 122 (2013). http:// dx.doi.org/10.1016/j.matlet.2012.10.035.   DOI   ScienceOn
34 Park HB, Nam HG, Oh HG, Kim JH, Kim CM, Song KS, Jhee KH. Effect of graphene on growth of neuroblastoma cells. J Microbiol Biotechnol, 23, 274 (2013).   DOI   ScienceOn
35 Orive G, Anitua E, Pedraz JL, Emerich DF. Biomaterials for promoting brain protection, repair and regeneration. Nat Rev Neurosci, 10, 682 (2009). http://dx.doi.org/10.1038/nrn2685.   DOI   ScienceOn
36 Allen TM, Cullis PR. Drug delivery systems: Entering the mainstream. Science, 303, 1818 (2004). http://dx.doi.org/10.1126/science.1095833.   DOI   ScienceOn
37 Liu Z, Robinson JT, Sun X, Dai H. PEGylated nanographene oxide for delivery of water-insoluble cancer drugs. J Am Chem Soc, 130, 10876 (2008). http://dx.doi.org/10.1021/ja803688x.   DOI   ScienceOn
38 Liu K, Zhang JJ, Cheng FF, Zheng TT, Wang C, Zhu JJ. Green and facile synthesis of highly biocompatible graphene nanosheets and its application for cellular imaging and drug delivery. J Mater Chem, 21, 12034 (2011). http://dx.doi.org/10.1039/C1JM10749.   DOI
39 Yang X, Zhang X, Ma Y, Huang Y, Wang Y, Chen Y. Superparamagnetic graphene oxide-Fe3O4 nanoparticles hybrid for controlled targeted drug carriers. J Mater Chem, 19, 2710 (2009). http:// dx.doi.org/10.1039/B821416F.   DOI   ScienceOn
40 Depan D, Shah J, Misra RDK. Controlled release of drug from folate-decorated and graphene mediated drug delivery system: synthesis, loading efficiency, and drug release response. Mater Sci Eng C, 31, 1305 (2011). http://dx.doi.org/10.1016/j.msec.2011.04.010.   DOI   ScienceOn
41 Bao H, Pan Y, Ping Y, Sahoo NG, Wu T, Li L, Li J, Gan LH. Chitosan-functionalized graphene oxide as a nanocarrier for drug and gene delivery. Small, 7, 1569 (2011). http://dx.doi.org/10.1002/smll.201100191.   DOI   ScienceOn
42 Cogan SF. Neural stimulation and recording electrodes. Annu Rev Biomed Eng, 10, 275 (2008). http://dx.doi.org/10.1146/annurev.bioeng.10.061807.160518.   DOI   ScienceOn
43 Nam Y. Material considerations for in vitro neural interface technology. MRS Bull, 37, 566 (2012). http://dx.doi.org/10.1557/mrs.2012.98.   DOI
44 Ordonez J, Schuettler M, Boehler C, Boretius T, Stieglitz T. Thin films and microelectrode arrays for neuroprosthetics. MRS Bull, 37, 590 (2012). http://dx.doi.org/doi:10.1557/mrs.2012.117.   DOI
45 Wallace G, Spinks G. Conducting polymers--bridging the bionic interface. Soft Matter, 3, 665 (2007). http://dx.doi.org/10.1039/b618204f.   DOI   ScienceOn
46 Wallace GG, Spinks GM. Conducting polymers--a bridge across the bionic interface. Chem Eng Prog, 103, S18 (2007).
47 Zhou K, Thouas GA, Bernard CC, Nisbet DR, Finkelstein DI, Li D, Forsythe JS. Method to impart electro-and biofunctionality to neural scaffolds using graphene-polyelectrolyte multilayers. ACS Appl Mater Interfaces, 4, 4524 (2012). http://dx.doi.org/10.1021/am3007565.   DOI   ScienceOn
48 Green RA, Lovell NH, Wallace GG, Poole-Warren LA. Conducting polymers for neural interfaces: challenges in developing an effective long-term implant. Biomaterials, 29, 3393 (2008). http:// dx.doi.org/10.1016/j.biomaterials.2008.04.047.   DOI   ScienceOn
49 Keefer EW, Botterman BR, Romero MI, Rossi AF, Gross GW. Carbon nanotube coating improves neuronal recordings. Nat Nanotechnol, 3, 434 (2008). http://dx.doi.org/10.1038/nnano.2008.174.   DOI   ScienceOn
50 Nguyen P, Berry V. Graphene interfaced with biological cells: opportunities and challenges. J Phys Chem Lett, 3, 1024 (2012). http://dx.doi.org/10.1021/jz300033g.   DOI   ScienceOn
51 Bendali A, Hess LH, Seifert M, Forster V, Stephan AF, Garrido JA, Picaud S. Purified neurons can survive on peptide-free graphene layers. Adv Healthc Mater, in press (2013). http://dx.doi. org/10.1002/adhm.201200347.   DOI   ScienceOn
52 Chen CH, Lin CT, Hsu WL, Chang YC, Yeh SR, Li LJ, Yao DJ. A flexible hydrophilic-modified graphene microprobe for neural and cardiac recording. Nanomedicine, in press (2013). http://dx.doi. org/10.1016/j.nano.2012.12.004.   DOI   ScienceOn
53 Hess LH, Jansen M, Maybeck V, Hauf MV, Seifert M, Stutzmann M, Sharp ID, Offenhausser A, Garrido JA. Graphene transistor arrays for recording action potentials from electrogenic cells. Adv Mater, 23, 5045 (2011). http://dx.doi.org/10.1002/adma.201102990.   DOI   ScienceOn
54 Cohen-Karni T, Qing Q, Li Q, Fang Y, Lieber CM. Graphene and nanowire transistors for cellular interfaces and electrical recording. Nano Lett, 10, 1098 (2010). http://dx.doi.org/10.1021/nl1002608.   DOI   ScienceOn
55 Luo X, Weaver CL, Tan S, Cui XT. Pure graphene oxide doped conducting polymer nanocomposite for bio-interfacing. J Mater Chem B, 1, 1340 (2013). http://dx.doi.org/10.1039/C3TB00006K.   DOI   ScienceOn