• Title/Summary/Keyword: Thermal insulation material

Search Result 392, Processing Time 0.03 seconds

The Electric Characteristics of the Thermal Aged Insulation-Paper with Moisture Content on the Transformer (변압기 절연지의 수분함량 및 열화에 따른 전기적 특성 연구)

  • Kim, Pil-Hwan;Kim, Ju-Han;Lee, Byung-Sung;Lee, Won-Yeong;Kim, Do-Young;Han, Sang-Ok
    • Proceedings of the KIEE Conference
    • /
    • 2004.07c
    • /
    • pp.1909-1911
    • /
    • 2004
  • It is caused that insulation paper, which had got a lot of thermal stress by over-load after installation, should have been deteriorated in electrical and mechanical characteristics. Beside, insulation material is decreased the insulating property and accelerated aging of them in case of dielectric loss when transformers are manufactured with some moisture or transformers would have been them because of moisture-permeation, Therefore, in this study we experienced the influence of moisture content in case of the thermal aged insulation paper. we have measured tan ${\delta}$ and breakdown voltage in the ratio of paper' moisture content before the aging and then taken the same tests again after insulation paper thermally accelerating-aged. There is a purpose to gain data for a life-design and to establish aging mechanism in order to continuously study life expectancy of the insulation paper.

  • PDF

Chemical Properties of Insulation Paper in oil after Thermal Aging (열 열화에 따른 유입절연지의 화학적 특성)

  • Kim, Pil-Hwan;Kim, Jae-Hoon;Kim, Ju-Han;Lee, Won-Yeong;Han, Sang-Ok
    • Proceedings of the KIEE Conference
    • /
    • 2004.11d
    • /
    • pp.77-79
    • /
    • 2004
  • It is caused that insulation paper, which had got a lot of thermal stress by over-load after installation, should have been deteriorated in electrical and mechanical characteristics. Beside, insulation material is decreased the insulating property and accelerated aging of them in case of dielectric loss when transformers are manufactured with some moisture or transformers would have been them because of moisture-permeation. Therefore, in this study we experienced the influence of moisture content in case of the thermal aged insulation paper. we have measured tan 6 and breakdown voltage in the ratio of paper' moisture content before the aging and then taken the same tests again after insulation paper thermally accelerating-aged. There is a purpose to gain data for a life-design and to establish aging mechanism in order to continuously study life expectancy of the insulation paper

  • PDF

Thermal Characteristics of Epoxy-Nanocomposites filled Several Types Nano Layered Silicate Particles (나노층상실리케이트가 충진된 에폭시-나노콤포지트의 열적특성 연구)

  • Park, Jae-Jun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.8
    • /
    • pp.749-754
    • /
    • 2008
  • A large number of studies on the various characteristics of epoxy-layered silicate nanocomposites, such as electric and mechanical, morphology have been conducted and contributed to improve their characteristics. However, studies on the effects of its thermal conductivities in the thermal properties are not enough, even though there are some excellent evaluations for its insulation performances. Thermal properties will cause thermal degradation and significantly affect the reliability of these epoxy-layered silicate nanocomposites. In the results of the analysis of epoxy-layered silicate nanocomposites $T_g$ for various types of organoclays (10A, 15A, 20A, 30B, and 93A), it showed an excellent thermal property of 10A. Also, it represented low values in storage modulus and mechanical Tan (Delta) at a high temperature section 140$^{\circ}C$ and excellent thermal properties due to its movement to the high temperature section in the case of the property of 10A in the measurement of DMA elastics and mechanical losses. In the results of the measurement of thermal conductivities, power ultrasonic applications represented a significant increase in thermal conductivities in the case of the applications of power ultrasonic and planetary centrifugal mixers. Based on these results, it is necessary to perform related studies because it can be applied as useful materials for future power facilities applications in mold and impregnate insulation.

Analysis on Insulation of Wind Environment and Greenhouse Cover Materials Insulation for Advanced Greenhouse Energy Design in Saemangeum Reclaimed Land (새만금 간척지 첨단온실 에너지 설계를 위한 풍환경 및 온실 피복재의 영향 분석)

  • Hyo-Jae Seo;Il-Hwan Seo;Deuk-ha Noh;Haksung Lee
    • Journal of Bio-Environment Control
    • /
    • v.32 no.1
    • /
    • pp.57-63
    • /
    • 2023
  • The external weather conditions including temperature and wind speed in the Saemangeum reclaimed land is different from that of the inland, affecting the internal environment of the greenhouse. Therefore, it is important to select an appropriate covering material considering the insulation effect according to the type and characteristics of the covering material considering the weather condition in the Saemangeum reclaimed land. A hexahedral insulation chamber was designed to evaluate the insulation efficiency of each glass-clad material in the outside weather condition in reclaimed land. In order to evaluate the insulation effect of each covering material, a radiator was installed and real-time power consumption was monitored. 16-mm PC (polycarbonate), 16-mm PMMA (polymethyl methacrylate), 4-mm greenhouse glass, and 16-mm double-layered glass were used as the covering materials of the chamber. In order to understand the effect of the external wind directions, the windward and downwind insulation properties were evaluated. As a result of comparing the thermal insulation effect of each greenhouse cover material to single-layer glass, the thermal insulation effect of double-layer glass was 16.9% higher, while PMMA and PC were 62.5% and 131.2% higher respectively. On average the wind speed on the windward side was 53.1% higher than that on the lee-wind side, and the temperature difference between the inside and outside of the chamber at the wind ward side was found to be 52.0% larger than that on the lee ward side. During the experiment period, the overall heating operation time for PC was 39.2% lower compared to other insulation materials. Showing highest energy efficiency, and compared to PC, single-layer glass power consumption was 37.4% higher.

The sound insulation performance of eco-friendly loess brick wall (친환경 황토벽체의 차음성능 평가에 관한 연구)

  • Lee, Tai-Gang;Kim, Yul;Song, Kook-Gon;Kim, Sun-Woo
    • KIEAE Journal
    • /
    • v.9 no.6
    • /
    • pp.13-18
    • /
    • 2009
  • Korean traditional houses have been developed in harmony with natural environment and comfortable indoor condition by using the natural resources including building layout, space composition and materials. Originally Korea traditional architectures have used wood lintel constructions and loess walls through the many years. Theses loess have many strength such as highly heat capacity, controling of humidity, a deodorant than any other materials. Nowaday it is recommended to use exterior and interior walls in loess wall to meet the eco-friendly materials to improve our residental environmental. Thus this study aims to research the sound insulation performance of traditional loess brick wall varied with thickness, thermal insulation materials and cavity wall. The sound insulation performance of these loess walls are compared with other masonry wall's and sound insulation performance of th walls were tested in anechoic laboratory to measure the sound transmission loss of these walls. The loess brick wall with 75mm thickness of cavity is shown the sound insulation performance with Rw 57 which is nearly same performances of 1B brick wall and cement 8' block wall, The improving effect of insulation materials is shown in the high frequency bandwidth. Especially, there is improving as much as 11 dB using the extruded poly stylene form(75mm) and poly ethylene film(0.7mm).

dispersion and relaxation of Epoxy/Layered Nanocomposite (에폭시/나노층상복합재료의 유전분산과 완화)

  • Ahn, Joon-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.87-87
    • /
    • 2010
  • Epoxy/mica has been used as the material of high-voltage rotator stator winding due to its high insulation performance, mechanical strength, and thermal stability. In recent years, however, it shows frequent changes in the load of generators and frequent automatic stops due to the significant increase in peak loads from the increase in the applied load of power facilities according to the introduction of advanced and high-technology equipments. Thus, it is necessary to develop new materials that highly develop the conventional insulation materials. Nanotechnology introduced in the present time has become an alternative plan that overcomes such technical limitations. In addition, the nano-scaled intercalation composite has been known as the material that represent excellent electrical, mechanical, and thermal characteristics compared to the conventional materials. This study investigated the dielectric dispersion and relaxation characteristics of the nanocomposite, which was fabricated by mixing epoxy matrix with nano-scaled intercalation mica and clay, according to changes in frequencies and temperatures.

  • PDF

Gas detection charracteristic of Transformer Oil Gas Detector (변압기 절연유중 가스 검출장치의 가스 감지 특성)

  • Hwang, Kyu-Hyun;Seo, Ho-Joon;Lee, Suck-Woo;Rhie, Dong-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.323-324
    • /
    • 2005
  • To found out the degradation characteristic of transformer insulation, insulation materials and electrodes are deposited into transformer oil. They used to heated and make flashover. Due to the thermal and electrical stress added to insulation materials, the density of carbon dioxide and hydrogen included in transformer oil was increased. The gas density can measured by using the gas density detection equipment of gas sensor and air circulation method.

  • PDF

A predicting model for thermal conductivity of high permeability-high strength concrete materials

  • Tan, Yi-Zhong;Liu, Yuan-Xue;Wang, Pei-Yong;Zhang, Yu
    • Geomechanics and Engineering
    • /
    • v.10 no.1
    • /
    • pp.49-57
    • /
    • 2016
  • The high permeability-high strength concrete belongs to the typical of porous materials. It is mainly used in underground engineering for cold area, it can act the role of heat preservation, also to be the bailing and buffer layer. In order to establish a suitable model to predict the thermal conductivity and directly applied for engineering, according to the structure characteristics, the thermal conductivity predicting model was built by resistance network model of parallel three-phase medium. For the selected geometric and physical cell model, the thermal conductivity forecast model can be set up with aggregate particle size and mixture ratio directly. Comparing with the experimental data and classic model, the prediction model could reflect the mixture ratio intuitively. When the experimental and calculating data are contrasted, the value of experiment is slightly higher than predicting, and the average relative error is about 6.6%. If the material can be used in underground engineering instead by the commonly insulation material, it can achieve the basic requirements to be the heat insulation material as well.

Analysis of DC insulation and properties of epoxy/ceramic composites with nanosized ZnO/TiO2 fillers

  • Kwon, Jung-Hun;Kim, Yu-Min;Kang, Seong-Hwa;Kim, Pyung-Jung;Jung, Jong-Hoon;Lim, Kee-Joe
    • Journal of Ceramic Processing Research
    • /
    • v.13 no.spc2
    • /
    • pp.332-335
    • /
    • 2012
  • A molded transformer is maintenance-free, which makes it unnecessary to replace the insulating material, like in an oil-filled transformer, because the epoxy, which is a molded insulating resin, does not suffer variations in its insulating performance for heat cycles over a long time, as compared to insulating oil. In spite of these advantages, a molded transformer may still be accessed by the user, which is not good in regards to reliability or noise compared to the oil transformers. In particular, a distrust exists regarding reliability due to the long-term insulating performance. These properties have been studied in regards to the improvement of epoxy composites and molded transformer insulation. There have nevertheless been insufficient investigations into the insulation properties of epoxy composites. In this study, it is a researching of the epoxy for insulating material. In order to prepare the specimens, a main resin, a hardener, an accelerator, and a nano/micro filler were used. Varying amounts of TiO2 and ZnO nano fillers were added to the epoxy mixture along with a fixed amount of micro silica. This paper presents the DC insulation breakdown test, thermal expansion coefficient, and thermal conductivity results for the manufactured specimens. From these results, it has been found that the insulating performance of nano/micro epoxy composites is improved as compared to plain molded transformer insulation, and that nano/micro epoxy composites contribute to the reliability and compactness of molded transformers.

A Study on Thermal Properties for Epoxy Micro-and-Nano Mixture Composites(EMNC) (에폭시 마이크로-나노 입자가 혼합된 콤포지트의 열적특성에 관한연구)

  • Lee, Chang-Hoon;Kim, Kuk-Jin;Kim, Suk-Man;Kang, Do-Hoon;Yeon, Da-Som;Park, Jae-Jun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.83-83
    • /
    • 2010
  • This study investigates the thermal and mechanical properties of insulation elements through mixing epoxy based micro- and nano particles. Regarding thermal properties, DSC and DMA were used to calculate crosslinking densities for various types of insulation elements. In a mechanical property of bending strength, shape and scale parameters were obtained using the Weibull plot. This study obtained the most excellent results of scale parameters, such as Vol 3.2%, in the bending strength of EMNCs.

  • PDF