• Title/Summary/Keyword: Thermal forming

Search Result 492, Processing Time 0.025 seconds

Effect of B2O3 Addition on Thermal, Structure, and Sealing Properties V2O5-P2O5-ZnO Glass (B2O3첨가에 따른 V2O5-P2O5-ZnO계 유리의 물성 및 구조와 봉착특성)

  • Sung, Aram;Kim, Yurian;Kim, Hyungsun
    • Korean Journal of Materials Research
    • /
    • v.26 no.10
    • /
    • pp.549-555
    • /
    • 2016
  • We have investigated a glass-forming region of $V_2O_5-P_2O_5-ZnO$ glass and the effects of the addition of modifier oxides ($B_2O_3$) to the glass systems as a sealing material to improve the adhesion between the glass frits and a soda lime substrate. Thermal properties and coefficient of thermal expansion were measured using a differential scanning calorimetry, a dilatometer and a hot stage microscopy. Structural changes and interfacial reactions between the glass substrate and the glass frit after sintering (at $400^{\circ}C$ for 1 h) were measured by Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and scanning electron microscope. The results showed that the adhesion strength increases as the content of $B_2O_3$ at 5 mol% increases because of changes in the structural properties. It seems that the glass structures change with $B_2O_3$, and the $Si^{4+}$ ions from the substrate are diffused to the sealing glass. From these results, we could understand the mechanism of strengthening of the adhesion of soda lime silica substrate by ion-diffusion from the substrate to the glass.

Thermal stability, magnetic and magnetocaloric properties of Gd55Co35M10 (M = Si, Zr and Nb) melt-spun ribbons

  • Jiao, D.L.;Zhong, X.C.;Zhang, H.;Qiu, W.Q.;Liu, Z.W.;Ramanujan, R.V.
    • Current Applied Physics
    • /
    • v.18 no.12
    • /
    • pp.1523-1527
    • /
    • 2018
  • The thermal stability, magnetic and magnetocaloric properties of $Gd_{55}Co_{35}M_{10}$ (M = Si, Zr and Nb) melts-pun ribbons were studied. The relatively high reduced glass transition temperature ($T_{x1}/T_m$ > 0.60) and low melting point ($T_m$) resulted in excellent glass forming ability (GFA). The Curie temperatures ($T_C$) of melt-spun amorphous ribbons $Gd_{55}Co_{35}M_{10}$ for M = Si, Zr and Nb were 166, 148 and 173 K, respectively. For a magnetic field change of 2 T, the values of maximum magnetic entropy change $(-{\Delta}S_M)^{max}$ for $Gd_{55}Co_{35}Si_{10}$, $Gd_{55}Co_{35}Zr_{10}$ and $Gd_{55}Co_{35}Nb_{10}$ were found to be 2.86, 4.28 and $4.05J\;kg^{-1}K^{-1}$, while the refrigeration capacity (RC) values were 154, 274 and $174J\;kg^{-1}$, respectively. The $RC_{FWHM}$ values of amorphous alloys $Gd_{55}Co_{35}M_{10}$ (M = Si, Zr and Nb) are comparable to or larger than that of $LaFe_{11.6}Si_{1.4}$ crystalline alloy. Large values of $(-{\Delta}S_M)^{max}$ and RC along with good thermal stability make $Gd_{55}Co_{35}M_{10}$ (M = Si, Zr and Nb) amorphous alloys be potential materials for magnetic cooling operating in a wide temperature range from 150 to 175 K, e.g., as part of a gas liquefaction process.

Thermal Shock Resistance According to the Manufacturing Process of Lanthanum Gadolinium Zirconate Ceramic Igot for Thermal Barrier Coating by Electron Beam in the La2O3-Gd2O3-ZrO2 System (전자빔 증착 열차폐 코팅용 란타늄-가돌리늄 지르코네이트(La2O3-Gd2O3-ZrO2계) 세라믹 잉곳의 제조공정에 따른 열충격 저항성)

  • Choi, Seona;Chae, Jungmin;Kim, Seongwon;Lee, Sungmin;Han, Yoonsoo;Kim, Hyungtae;Jang, Byungkoog;Oh, Yoonsuk
    • Journal of the Korean institute of surface engineering
    • /
    • v.50 no.6
    • /
    • pp.465-472
    • /
    • 2017
  • The ingot fabrication conditions related with the thermal shock bearing phase and microstructure have investigated for the rare earth zirconate ceramic material, lanthanum gadolinium zirconate, as a thermal barrier coating using electron beam evaporation method. The thermal shock resistance of the prepared ingot was evaluated by high energy electron beam irradiation. The rare earth zirconate ceramic powder was prepared by controlling the raw material powder composition of $La_2O_3$, $Gd_2O_3$ and $ZrO_2$ so as to have a composition of $(La_{0.3}Gd_{0.7})_2Zr_2O_7$ which was selected from the former study. Ingot samples were prepared under two conditions. The first condition is prepared by sintering the prepared powder mixture to form an ingot. The second condition is prepared by calcining the prepared powder mixture to form a composite phase and then sintering to form an ingot. X-ray diffraction(XRD) and Scanning Electron Microscope(SEM) were used to analyze phase forming behavior and microstructure of ingot samples. Nanoindentation method used to obtain elastic modulus and hardness of each ingot specimen. Also the stress distribution of ingot was simulated by using FEM method assuming the ingot surface was exposed to electron beam. As a results, in the case of an ingot having a network-shaped microstructure in which relatively coarse pores are included, it seems that the thermal shock resistance was higher than in the case of an ingot having a microstructure composed of relatively fine grains only or particles with the similar level size when the high energy electron beam irradiation.

Effect of Silicone Rubber Content on Thermal Stabilities of EPDM/Silicone Blends (실리콘고무 함량이 EPDM 고무의 열적 안정성에 미치는 영향)

  • Park, Soo-Jin;Kim, Jong-Hak;Joo, Hyeok-Jong;Jin, Fan-Long
    • Elastomers and Composites
    • /
    • v.40 no.4
    • /
    • pp.266-271
    • /
    • 2005
  • In this work, the thermal stability factors, such as the thermal decomposition temperature, decomposition activation energy ($E_d$), and char yield, were measured to investigate the effect of silicone rubber (SR) content on the thermal stabilities of EPDM/SR blends. As a result, the thermal decomposition curve of EPDM/SR blends was similar to the neat EPDM rubber at 10 wt% SR and the thermal decomposition temperature increased above this content. The $E_d$ value of EPDM rubber initially decreased and then was constant above 20 wt% weight losses. The $E_d$ of EPDM/SR blends was higher than that of the neat EPDM rubber and then decreased with increasing the weight loss when the SR content was in the range of 10-20 wt%. Whereas the $E_d$ of the blends was lower than that of the EPDM rubber and then decreased with increasing the weight loss when 30 wt% SR was added. The char yield at $800^{\circ}C$ increased with increasing the SR content, because the decomposition of silane groups in the backbone was capable of forming a silane-rich residue after the initial stage of thermal degradation, which finally prevents further heat transfer and diffusion in the blends.

Effect of Substrate Rotation on the Phase Evolution and Microstructure of 8YSZ Coatings Fabricated by EB-PVD

  • Park, Chanyoung;Choi, Seona;Chae, Jungmin;Kim, Seongwon;Kim, Hyungtae;Oh, Yoon-Suk
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.1
    • /
    • pp.81-86
    • /
    • 2016
  • The effect of substrate rotation speed on the phase forming behavior and microstructural variation of 8 wt% yttria ($Y_2O_3$) stabilized $ZrO_2$ (8YSZ) coatings as a thermal barrier coating has been investigated. 8YSZ coatings with $100{\sim}200{\mu}m$ thickness were deposited by electron beam-physical vapor deposition onto a super alloy (Ni-Cr-Co-Al) substrate with a bond coating (NiCo-CrAlY). The width of the columnar grains of the 8YSZ coatings increased with increasing substrate rotation speed from 1 to 30 rpm at a substrate temperature range of $900{\sim}950^{\circ}C$. In spite of the different growth behaviors of coatings with different substrate rotation speeds, the phases of each coating were not changed remarkably. Even after post heat treatments with various conditions of the coated specimens fabricated at 20 rpm, only a change of color was noticeable, without any remarkable change in the phase or microstructure.

A Study on the Magnetic Properties of Ceramics Superconductors for Simpllified Testing System (간소화 시스템적용을 위한 자기특성)

  • Lee, Sang-Heon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.2
    • /
    • pp.339-341
    • /
    • 2012
  • The high Tc superconductor of YBCO system with the nominal composition of precursor was prepared from mixed powders of $Y_2O_3$, $BaCO_3$, CuO and $TiO_2$ by the thermal pyrolysis method. The effect of $TiO_2$ doping to Y based ceramics superconductors fabricated by the thermal pyrolysis reaction, to investigate the effect of the dopant on the superconductivity. The voltage appearing across the field-cooled HTS sample increased with external magnetic field. The improvement of critical current property as well as the mechanical property is important for the application. The improvement of the critical current can be achieved by forming the nano size defect working as a flux pining center inside the superconductor. We simply added $TiO_2$ to starting materials to dope $TiO_2$ and observed an increase in the trapped field and the critical current density up to at least 5 wt % $TiO_2$. The $TiO_2$ was converted to fine $BaTiO_3$ particles which were trapped in YBCO matrix during the sintering process. We observed a peak effect of Jc that can be attributed to $TiO_2$ doping and results suggest that introducing a proper amount of pinning centers can significantly enhance current density.

Effects of Phosphorous-doping on Electrochemical Performance and Surface Chemistry of Soft Carbon Electrodes

  • Kim, Min-Jeong;Yeon, Jin-Tak;Hong, Kijoo;Lee, Sang-Ick;Choi, Nam-Soon;Kim, Sung-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.7
    • /
    • pp.2029-2035
    • /
    • 2013
  • The impact of phosphorous (P)-doping on the electrochemical performance and surface chemistry of soft carbon is investigated by means of galvanostatic cycling and ex situ X-ray photoelectron spectroscopy (XPS). P-doping plays an important role in storing more Li ions and discernibly improves reversible capacity. However, the discharge capacity retention of P-doped soft carbon electrodes deteriorated at $60^{\circ}C$ compared to non-doped soft carbon. This poor capacity retention could be improved by vinylene carbonate (VC) participating in forming a protective interfacial chemistry on soft carbon. In addition, the effect of P-doping on exothermic thermal reactions of lithiated soft carbon with electrolyte solution is discussed on the basis of differential scanning calorimetry (DSC) results.

Development of heat resistant body using Sanchung Kaolin and Jangsu gobdol sludge (산청고령토와 장수곱돌 슬러지를 사용한 내열소지 개발)

  • Kim, Sanggon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.30 no.1
    • /
    • pp.27-32
    • /
    • 2020
  • The main cystal phases of traditional ceramics made of clay, quartz, and feldspar are mullite and cristobalite. Although mullite can provide strength to the ceramic body, it cannot be used for the heat resistant ceramics because the thermal expansion coefficient of it is relatively high as 5.3 × 10-6/℃. In this study, development of lightweight heat resistant ceramics was tried by producing cordierite phase, of which the thermal expansion coefficient is 2.6 × 10-6/℃, instead of forming mullite phase in the ceramic body by using Sanchung Kaolin and Jangsu gobdol sludge. It was concluded that ceramics having good heat resistant, bending strength, and refractoriness under load could be fabricated when 80 wt% of Sanchung Kaolin and 20 wt% of Jangsu gobdol sludge were used as raw materials. Also, the bulk specific gravity is 1.78, which is lighter than the existing Buncheong ware.

Prediction of Dimensions of Cold Forgings Considering Springback of Material and Elastic Deformation of Die (소재의 탄성회복과 금형의 탄성변형을 고려한 냉간단조품의 치수 예측)

  • Jun B. Y.;Kang S. M.;Park J.M.;Lee M. C.;Park R. H.;Joun M. S.
    • Transactions of Materials Processing
    • /
    • v.14 no.5 s.77
    • /
    • pp.423-431
    • /
    • 2005
  • In this paper, a systematic attempt for estimating geometric dimensions of cold forgings is made by finite element method and a practical approach is presented. In the approach, the forging process is simulated by a rigid-plastic finite element method under the assumption that the die is rigid. With the information obtained from the forging simulation, die structural analysis and springback analysis of the material are carried out. In the springback analysis, both mechanical load and thermal load are considered. The mechanical load is applied by unloading the forming load elastically and the thermal load is by cooling the increased temperature due to the plastic work to the room temperature. All the results are added to predict the final dimensions of the cold forged product. The predicted dimensions are compared with the experiments. The comparison has revealed that predicted results are acceptable in the application sense.

Effect of Curvature on Deformation caused by Thermal Plate Forming (열간가공의 변형에 미치는 곡률의 영향에 관한 연구)

  • Lee, Joo-Sung
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.2
    • /
    • pp.67-72
    • /
    • 2011
  • This study had the goal of investigating the effect of the curvature along the heating line on the transverse angular distortion of plates having an initial curvature from line heating. A thermo-elasto-plastic analysis was carried out using 54 models with various radii of curvature, plate thicknesses, and heating speeds. The results show the effect of the curvature along the heating line on the angular distortion in relation to changes in the magnitudes of the curvature, heating speed, and plate thickness. The present numerical results show that the time history of the angular distortion after cooling and reaching the final deformed shape for a plate having an initial curvature is quite different from that of a flat plate. This emphasized the importance of considering the curvature effect on the transverse angular distortion. From the viewpoint of the curvature effect on the deformation, it has been seen that the curvature does not affect the transverse shrinkage. In this study the predicting formula for the transverse angular distortion was derived through a regression analysis. It showed that as the curvature increased, the angular distortion was reduced because of the higher bending rigidity at the same heat input parameter, and the peak points moved toward the origin as the curvature increased.