• Title/Summary/Keyword: Thermal expansion

Search Result 1,954, Processing Time 0.035 seconds

Grain Boundary Microcracking in ZrTiO4-Al2TiO5 Ceramics Induced by Thermal Expansion Anisotropy

  • Kim, Ik-Jin;Kim, Hyung-Chul;Lee, Kee-Sung;Han, In-Sub
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.2
    • /
    • pp.109-112
    • /
    • 2003
  • The grain-boundary microcracking materials in the system $Al_2$TiO$_{5}$ -ZrTiO$_4$(ZAT) is influenced by the thermal expansion anisotropy. The range of ZAT compositions investigated had showed very low thermal expansions of 0.3~1.3$\times$10$^{-6}$ K loin compared to 8.29$\times$10$^{6}$ K of pure ZrTiO$_4$and 0.68$\times$10$^{6}$ K of polycrystalline $Al_2$TiO$_{5}$ , respectively, compared with the theoretical thermal expansion coefficient for a single crystal of $Al_2$TiO$_{5}$ , 9.70$\times$10$^{6}$ K. The low thermal expansion and microcraking temperature are apparently due to a combination of thermal contraction and expansion caused by the large thermal expansion anisotropy of the crystal a ies of the $Al_2$TiO$_{5}$ phase.

Erratum to: "Grain Boundary Microcracking in ZrTiO4-Al2TiO5 Ceramics Induced by Thermal Expansion Anisotropy"

  • Kim, Ik-Jin;Kim, Hyung-Chul;Lee, Kee-Sung;Han, In-Sub
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.3
    • /
    • pp.317-321
    • /
    • 2003
  • The grain-boundary microcracking materials in the system A1$_2$Ti $O_{5}$ -ZrTi $O_4$(ZAT) is influenced by the thermal expansion anisotropy. The range of ZAT compositions investigated had showed very low thermal expansions of 0.3~1.3$\times$10$^{-6}$K compared to 8.29$\times$10$^{-6}$K of pure ZrTi $O_4$and 0.68$\times$10$^{-6}$K of polycrystalline A1$_2$Ti $O_{5}$ , respectively, compared with the theoretical thermal expansion coefficient for a single crystal of A1$_2$Ti $O_{5}$ , 9.70$\times$10$^{-6}$K. The low thermal expansion and microcraking temperature are apparently due to a combination of thermal contraction and expansion caused by the large thermal expansion anisotropy of the crystal axes of the A1$_2$Ti $O_{5}$ phase.

Thermal Strain Analysis of Composite Materials by Electronic Speckle Pattern Interferometry

  • Kim, Koung-Suk;Jang, Wan-Shik;Hong, Myung-Seak;Kang, Ki-Soo;Jung, Hyun-Chul;Kang, Young-Jun;Yang, Sung-Pil
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.5
    • /
    • pp.477-482
    • /
    • 2000
  • This study discusses a non-contact optical technique (electronic speckle pattern interferometry) that is well suited for thermal deformation measurement without any surface preparation and compensating process. Fiber reinforced plastics ($[0]_{16},\;[0/90]_{8S}$) were analyzed by ESPI to determine their thermal expansion coefficients. The thermal expansion coefficient of the transverse direction of a uniaxial composite is evaluated as $48.78{\times}10^{-6}(1/^{\circ}C)$. Also, the thermal expansion coefficient of the cross-ply laminate $[0/90]_{8S}$ is numerically estimated as $3.23{\times}10^{-6}(1/^{\circ}C)$ that is compared with that measured by ESPI.

  • PDF

On thermal stability of plates with functionally graded coefficient of thermal expansion

  • Bousahla, Abdelmoumen Anis;Benyoucef, Samir;Tounsi, Abdelouahed;Mahmoud, S.R.
    • Structural Engineering and Mechanics
    • /
    • v.60 no.2
    • /
    • pp.313-335
    • /
    • 2016
  • In this article, a four-variable refined plate theory is presented for buckling analysis of functionally graded plates subjected to uniform, linear and non-linear temperature rises across the thickness direction. The theory accounts for parabolic distribution of the transverse shear strains, and satisfies the zero traction boundary conditions on the surfaces of the plate without using shear correction factor. Young's modulus and Poisson ratio of the FGM plates are assumed to remain constant throughout the entire plate. However, the coefficient of thermal expansion of the FGM plate varies according to a power law form through the thickness coordinate. Equilibrium and stability equations are derived based on the present theory. The influences of many plate parameters on buckling temperature difference such ratio of thermal expansion, aspect ratio, side-to-thickness ratio and gradient index will be investigated.

Fiber Optic Temperature Sensor Based on the Thermal Expansion Effect of Fused Optical Fiber Coupler Fixed on a Al Support (알루미늄 지지대에 고정된 융착 광섬유 커플러의 열팽창을 이용한 온도 센서)

  • Kim, Kwang Taek
    • Journal of Sensor Science and Technology
    • /
    • v.26 no.5
    • /
    • pp.338-341
    • /
    • 2017
  • We have investigated a temperature sensor on a thermal expansion effect of a fused optical fiber coupler. Both side of the fused tapered region of the coupler were fixed on a metal support to induce the high thermal expansion effect. The sensor showed that the peak coupling wavelengths were shifted to shorted wavelength region with increased of environmental temperature. The sensitivity of the sensor was $0.12nm/^{\circ}C$.

Carbon Nanotube Oscillator Operated by Thermal Expansion of Encapsulated Gases (삽입 가스의 부피 팽창을 이용한 탄소나노튜브 진동기)

  • Kwon, Oh-Keun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.12
    • /
    • pp.1092-1100
    • /
    • 2005
  • We investigated a carbon nanotube (CNT) oscillator controlled by the thermal gas expansion using classical molecular dynamics simulations. When the temperature rapidly increased, the force on the CNT oscillator induced by the thermal gas expansion rapidly increased and pushed out the CNT oscillator. As the CNT oscillator extruded from the outer nanotube, the suction force on the CNT oscillator increased by the excess van der Waals(vdW) energy. When the CNT oscillator reached at the maximum extrusion point, the CNT oscillator was encapsulated into the outer nanotube by the suction force. Therefore, the CNT oscillator could be oscillated by both the gas expansion and the excess vdW interaction. As the temperature increased, the amplitude of the CNT oscillator increased. At the high temperatures, the CNT oscillator escaped from the outer nanotube, because the force on the CNT oscillator due to the thermal gas expansion was higher than the suction force due to the excess vdW energy. By the appropriate temperature controls, such as the maximum temperature, the heating rate, and the cooling rate, the CNT oscillator could be operated.

A Study on the Development of 25.8kV 25kA Gas Circuit Breaker Using Thermal-Expansion Principle(II) (25.8kV 25kA 열팽창분사식 가스차단기 개발에 관한 연구(II) - 팽창실 용적이 차단성능에 미치는 영향 -)

  • Song, K.D.;Park, K.Y.;Shin, Y.J.;Kim, K.S.;Kim, J.G.
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.80-82
    • /
    • 1996
  • This paper deals with the effects of the volume of thermal expansion chamber on the interrupting performance in thermal expansion type 25.8kV 25kA gas circuit breaker. Model interrupters with 5 type thermal expansion chamber were designed and manufactured. Short-circuit tests were carried out for those model interrupters with 25kA breaking current. Pressure rise in the expansion chamber were measured and compared with the calculated one which was obtained from a self-developed program in our team. The analysis on the interrupting performance of each model interrupter has been done on the base of the short-circuit test results.

  • PDF

Design of Filament Wound Composite Tubes under Thermal Contraction (열수축을 하는 필라멘트 와인딩 복합재료 관의 설계)

  • 정태은;신효철
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.10
    • /
    • pp.2407-2417
    • /
    • 1993
  • Thermal deformations and stresses due to temperature changes are the serious problems in cryogenic structures such as the torque tube in a superconducting generator, In this paper, the equations of thermal expansion coefficients expressed only by material properties and winding angles are derived for the filament wound composite tubes. The experimental results of thermal contraction of CFRP tubes are compared with those from theoretical approach. Composite tubes with optimally regulated thermal expansion coefficient are designed on the basis of the study for the torque tube in the superconducting generator with temperature distributions varying from 300K to 4.2 K. The filament winding angle of composites resisting thermal stresses properly is sought by the finite element method using layered shell elements. The results show that the composite tubes designed for the requirements in cryogenic environments can effectively cope with the thermal stress problem.

Evaluation of Temperature-dependency of CTE of Materials for MEMS Using ESPI (ESPI를 이용한 MEMS용 소재의 열팽창 계수 온도 의존성 평가)

  • Kim, Dong-Won;Kim, Hong-Jae;Lee, Nak-Kyu;Choi, Tae-Hoon;Na, Kyoung-Hoan;Kwon, Dong-Il
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1315-1320
    • /
    • 2003
  • The thermal expansion coefficient, which causes the micro failure at the interfacial state of thin films is necessary to consider for proper designing MEMS. The effect of temperature on the coefficient of thermal expansion(CTE) of $SiO_2$ and $Si_3N_4$ film was investigated. Thermal strain induced by mismatch of CTE between substrate and thin film continuously measured with resolution-improved electronic speckle pattern interferometry(ESPI). The thermal stress induced by mismatch of CTE derivate through thermal strain. The thermal expansion coefficients of thin film were calculated with the general equation of CTE and thermal stress in thin films, and it confirmed that CTE of $SiO_2$changed from $0.25{\times}10^{-6}/^{\circ}C$ to $1.4{\times}10^{-6}/^{\circ}C$ with temperature increasing from 50 to $600^{\circ}C$

  • PDF

Properties Analysis for Small Elements Added Shadow Mask Materials

  • Kim, Ku-Hak;Kim, Chung-Ho;Kim, Dong-Soo;Kim, One-Seek
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.1053-1055
    • /
    • 2002
  • Recently CRT is getting large-sized, Flatness and High Fine Pitched in the meantime the raw material for shadow mask is in rapid progress of thinness, Low Thermal Expansion and high strength.Until now we have used AK(Aluminum Killed) & Invar(Fe-Ni alloy) materials for main raw material of shadow mask component. However recently Nb and Co addition and Nb+Co addition, which has advantage of Low Thermal Expansion and High Strength. has been developed as well as applying in mass production as CRT's trend has become more flat and fine pitch. Among of them, Co addition has been mass production as forming type (Flat CRT) with the beneficial effect of low thermal expansion & high strength for the first time. Since then Nb+Co addition has been used in mass production by the request of much higher strength of shadow mask component. In case of Nb addition, It's thermal expansion coefficient is a little lower than normal Invar and a little higher than Co addition, meanwhile Its Mechanical property is almost similar to Co Addition. The used samples of this experiment are 36%Ni + Fe, 32%Ni + 5%Co + Fe, 32%Ni + 5%Co + 0.3%Nb + Fe, 32%Ni + 0.3%Nb + Fe with heat treatment temperature of 600$^{\circ}C$, 650$^{\circ}C$, 700$^{\circ}C$, 750$^{\circ}C$, 800$^{\circ}C$, 850$^{\circ}C$, 900$^{\circ}C$ respectively under the condition of 15min holding time. After heat treatment, we have observed the change of mechanical property with addition of small elements through mechanical property investigation and metal structure observation as well as transition of thermal expansion coefficient by measuring of thermal expansion coefficient at 850$^{\circ}C$. In conclusion, 5%Co addition indicates that its thermal expansion coefficient is very similar under the condition of at 850$^{\circ}C$ for 15min 's heat treatment. From the experimental result it is suggested that Co addition is mostly suitable for Doming property and Nb addition is mostly suitable for Drop property.

  • PDF