Browse > Article
http://dx.doi.org/10.4313/JKEM.2005.18.12.1092

Carbon Nanotube Oscillator Operated by Thermal Expansion of Encapsulated Gases  

Kwon, Oh-Keun (세명대학교 인터넷정보학부)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.18, no.12, 2005 , pp. 1092-1100 More about this Journal
Abstract
We investigated a carbon nanotube (CNT) oscillator controlled by the thermal gas expansion using classical molecular dynamics simulations. When the temperature rapidly increased, the force on the CNT oscillator induced by the thermal gas expansion rapidly increased and pushed out the CNT oscillator. As the CNT oscillator extruded from the outer nanotube, the suction force on the CNT oscillator increased by the excess van der Waals(vdW) energy. When the CNT oscillator reached at the maximum extrusion point, the CNT oscillator was encapsulated into the outer nanotube by the suction force. Therefore, the CNT oscillator could be oscillated by both the gas expansion and the excess vdW interaction. As the temperature increased, the amplitude of the CNT oscillator increased. At the high temperatures, the CNT oscillator escaped from the outer nanotube, because the force on the CNT oscillator due to the thermal gas expansion was higher than the suction force due to the excess vdW energy. By the appropriate temperature controls, such as the maximum temperature, the heating rate, and the cooling rate, the CNT oscillator could be operated.
Keywords
CNT oscillator; Nanoscale thermal expansion; Molecular dynamics; Atomistic simulation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 K. E. Drexler, 'Nanosystems: Molecular Machinery, Manufacturing, and Computation', Wiley, New York, p, 1, 1992
2 R. P. Feynman, 'There is plenty of room at the bottom', Eng. Sei., Vol. 23, p, 22, 1960
3 R P. Feynman, 'There is plenty of room at the bottom', J. Microelectromech. Syst., Vol, 1, No.1, p, 50, 1992
4 Q. Zheng, J. S. Liu, and Q. Jiang, 'Excess van der Waals interaction energy of a multiwalled carbon nanotube with an extruded core and the induced core oscillation', Phys. Rev. B, Vol. 65, No. 24, p. 245409, 2002
5 W. Guo, Y. Guo, H. Gao, Q. Zheng, and W. Zheng, 'Energy dissipation in gigahertz oscillators from multiwalled carbon nanotubes', Phys, Rev. Lett., Vol. 91, No. 12, p. 125501, 2003
6 Y. Zhao, C. C. Ma, G. Chen, and Q. Jiang, 'Energy dissipation mechanisms in carbon nanotube oscillators', Phys. Rev. Lett., Vol. 91, No. 17, p. 175504, 2003
7 S. B. Legoas, V. R. Coluci, S. F. Braga, P. Z. Coura, S. O. Dantas, and D. S. Galvao, 'Molecular-dynamics simulations of carbon nanotubes as gigahertz oscillators', Phys, Rev. Lett., Vol. 90, No.5, p, 055504, 2003
8 S. B. Legoas, V. R. Coluci, S. F. Braga, P. Z. Coura, S. O. Dantas, and D. S. Galvao, 'Gigahertz nanomechanical oscillators based on carbon nanotubes', Nanotechnology, Vol. 15, No.4, p. S184, 2004
9 J. W. Kang and H. J. Hwang, 'Gigahertz actuator of multiwall carbon nanotube encapsulating metallic ions: molecular dynamics simulations', J. Appl, Phys., Vol. 96, No.7, p. 3900, 2004
10 J. Cumings and A. Zettl, 'Low-friction nanoscale linear bearing realized from multiwall carbon nanotubes', Science, Vol. 289, No. 5479, p, 602, 2000
11 S. Suzuki, F. Maeda, Y. Watanabe, and T. Ogino, 'Electronic structure of single-walled carbon nanotubes encapsulating potassium', Phys. Rev. B, Vol. 67 No. 11, p. 115418, 2003
12 J. Tersoff, 'Empirical interatomic potential silicon with improved elastic properties', Phys. Rev. B, Vol. 38, No. 14, p. 9902, 1988
13 D. W. Brenner, 'Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films', Phys. Rev. B, Vol. 42, No. 15, p. 9458, 1990
14 Z. Mao, A. Garg, and S. B. Sinnott, 'Molecular dynamics simulations of the filling and decorating of carbon nanotubules', Nanotechnology, Vol. 10, No.3, p. 273, 1999
15 Y. Guo, N. Karsawa, and W. A. Goddard III, 'Prediction of fullerene packing in $C_{60}$ and $C_{70}$ crystals', Nature, Vol. 351, No. 6326, p. 464, 1991
16 G. Chen, Y. Guo, N. Karasawa, and W. A. Goddard III, 'Electron -phonon interactions and superconductivity in $K_{3}C_{60}$', Phys, Rev. B, Vol. 48, No. 18, p. 13959, 1993
17 G. Gao, T. Cagin, and W. A. Goddard III, 'Position of K atoms in doped single-walled carbon nanotube crystals', Phys, Rev. Lett., Vol. 80, No. 25, p. 5556, 1998
18 W. Guo, W. Zhong, Y. Dai, and S. Li, 'Coupled defect-size effects on interlayer friction in multiwalled carbon nanotubes', Phys. Rev. B, Vol. 72, No.7, p. 075409, 2005
19 S. Akita and Y. Nakayama, 'Interlayer sliding force of individual multiwall carbon nanotubes', Jpn. J. Appl, Phys., Vol. 42, No. m, p. 4830, 2003
20 Z. Xia and W. A. Curtin, 'Pullout forces and friction in multiwall carbon nanotubes', Phys. Rev. B, Vol. 69, No. 23, p. 233408, 2004
21 P. Kim, L. Shi, A. Majumdar, and P. L. McEuen, 'Thermal transport measurements of individual multiwalled nanotubes', Phys, Rev. Lett., Vol. 87, No. 21, p. 215502, 2001
22 R. S. Lee, H. J. Kim, J. E. Fischer, A. Thess, and R. E. Smalley, 'Conductivity enhancement in single-walled carbon nanotube bundles doped with K and Br', Nature, Vol. 388, No. 6639, p. 255, 1997
23 J. Tersoff, 'Modeling solid-state chemistry: Interatomic potentials for multicomponent systems', Phys, Rev. B, Vol. 39, No.8, p. 5566, 1989
24 B. C. Crandall and J. Lewis, 'Nanotechnology: Research and Perspectives', MIT, Cambridge, p. 13, 1992
25 Q. Zheng and Q. Jiang, 'Multiwalled carbon nanotubes as gigahertz oscillators', Phys. Rev. Lett., Vol. 88, No.4, p. 045503, 2002