• Title/Summary/Keyword: Thermal engineering

Search Result 15,393, Processing Time 0.044 seconds

Current Sensing Trench Gate Power MOSFET for Motor Driver Applications (모터구동 회로 응용을 위한 대전력 전류 센싱 트렌치 게이트 MOSFET)

  • Kim, Sang-Gi;Park, Hoon-Soo;Won, Jong-Il;Koo, Jin-Gun;Roh, Tae-Moon;Yang, Yil-Suk;Park, Jong-Moon
    • Journal of IKEEE
    • /
    • v.20 no.3
    • /
    • pp.220-225
    • /
    • 2016
  • In this paer, low on-resistance and high-power trench gate MOSFET (Metal-Oxide-Silicon Field Effect Transistor) incorporating current sensing FET (Field Effect Transistor) is proposed and evaluated. The trench gate power MOSFET was fabricated with $0.6{\mu}m$ trench width and $3.0{\mu}m$ cell pitch. Compared with the main switching MOSFET, the on-chip current sensing FET has the same device structure and geometry. In order to improve cell density and device reliability, self-aligned trench etching and hydrogen annealing techniques were performed. Moreover, maintaining low threshold voltage and simultaneously improving gate oxide relialility, the stacked gate oxide structure combining thermal and CVD (chemical vapor deposition) oxides was adopted. The on-resistance and breakdown voltage of the high density trench gate device were evaluated $24m{\Omega}$ and 100 V, respectively. The measured current sensing ratio and it's variation depending on the gate voltage were approximately 70:1 and less than 5.6 %.

Effect of surface roughness of AlN substrate and sintering temperature on adhesion strength of Ag thick film conductors (AlN 기판의 표면조도 및 소결온도가 Ag 후막도체의 접착강도에 미치는 영향)

  • Koo, Bon Keup
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.30 no.3
    • /
    • pp.83-90
    • /
    • 2020
  • The effect of substrate surface roughness and sintering temperature on the adhesion strength of Ag-based thick film conductors formed on AlN substrates with excellent thermal conductivity was studied. The adhesion strength of the thick-film conductor manufactured using an AlN substrate having a surface roughness (Ra) of 0.5 was higher than that of a thick-film conductor manufactured using a substrate having a surface roughness greater or smaller than this. In the case of a substrate with a surface roughness of less than 0.5, the contact area between the Ag thick film conductor and the substrate was relatively smaller than that of a substrate with a surface roughness of 0.5, resulting in a lower adhesive strength. On the other hand, when a substrate having a surface roughness of more than 0.5 was used, it was found that the conductor film was not completely adhered to the substrate, and as a result, it was found that the adhesive strength was small. In addition, it was found that the surface smoothness of the Ag-based thick film conductor film obtained by sintering at 850℃ was the best compared to the smoothness of the conductor film obtained by sintering at different sintering temperatures, and as a result, it was found that the adhesive strength of the conductor film was the highest.

Anisotropy Angle Dependence of Interlayer Exchange Coupling of Perpendicular Magnetic [CoFe/Pt/CoFe]/IrMn Multilayers ([CoFe/Pt/CoFe]/IrMn 다층박막의 수직자기 이방성 각도에 따른 상호교환결합력 특성)

  • Lee, Sang-Suk;Choi, Jong-Gu;Hwang, Do-Guwn;Rhee, Jang-Roh
    • Journal of the Korean Magnetics Society
    • /
    • v.18 no.6
    • /
    • pp.232-236
    • /
    • 2008
  • Dependence of interlayer exchange coupling on antiferromagnetic IrMn thickness, thermal stability, and parallel anisotropy angle in perpendicular anisotropy [CoFe/Pt/CoFe]/IrMn multilayers was investigated. The magnetic property of [CoFe($10{\AA}$)/Pt($8{\AA}$)/CoFe($10{\AA}$)] induced by antiferromagnetic ordering of IrMn layer was maintained a stable perpendicular anisotropy up to $250^{\circ}C$ and from $7{\AA}$ to $160{\AA}$ of IrMn thickness. The value of interlayer exchange coupling of [CoFe/Pt/CoFe]/IrMn multilayers with perpendicular anisotropy increased to 1.5 times at anisotropy angle of $60^{\circ}$ more than of $0^{\circ}$. On the other side, the interlayer exchange coupling at anisotropy angle of $90^{\circ}$ was $\infty$ Oe, it was likely diverted to a parallel shape magnetization.

Digitalization of the Nuclear Steam Generator Level Control System (증기발생기 수위조절 시스템의 디지탈화)

  • Lee, Yoon-Joon;Lee, Un-Chul
    • Nuclear Engineering and Technology
    • /
    • v.25 no.1
    • /
    • pp.125-135
    • /
    • 1993
  • The safe and efficient operation of nuclear plants is recognized to be accomplished through the application of plant automation using digital technology, which is one of main targets of the next generation nuclear plants. For plant level automation, it is first required that each major subsystem be digitalized, and the steam generator water level control system is discussed in this study. The transfer functions between inputs and the level are derived by employing the thermal hydraulic model of the steam generator and are applied to the analysis of the current three-element control system. Since the control scheme in this study includes the steam generator itself as a process plant, the system order is high and the numerical instability arises in digitalizing. Together with this, the unreliability of the feedwater feedback signal at low power level leads to the proposal of a two-element control system with a proper digital controller. The digital PI controller developed for this system has the initial power adaptive gain and integration time constant. And it makes the overall system response satisfy the stability and other necessary control specifications simultaneously. Since the two-element control system using this controller depends on the initial power only, it is simple to define and it shows a similar level response behavior to that of its corresponding analog system.

  • PDF

Comparative Experiments to Assess the Effects of Accumulator Nitrogen Injection on Passive Core Cooling During Small Break LOCA

  • Li, Yuquan;Hao, Botao;Zhong, Jia;Wang, Nan
    • Nuclear Engineering and Technology
    • /
    • v.49 no.1
    • /
    • pp.54-70
    • /
    • 2017
  • The accumulator is a passive safety injection device for emergency core cooling systems. As an important safety feature for providing a high-speed injection flow to the core by compressed nitrogen gas pressure during a loss-of-coolant accident (LOCA), the accumulator injects its precharged nitrogen into the system after its coolant has been emptied. Attention has been drawn to the possible negative effects caused by such a nitrogen injection in passive safety nuclear power plants. Although some experimental work on the nitrogen injection has been done, there have been no comparative tests in which the effects on the system responses and the core safety have been clearly assessed. In this study, a new thermal hydraulic integral test facility-the advanced core-cooling mechanism experiment (ACME)-was designed and constructed to support the CAP1400 safety review. The ACME test facility was used to study the nitrogen injection effects on the system responses to the small break loss-of-coolant accident LOCA (SBLOCA) transient. Two comparison test groups-a 2-inch cold leg break and a double-ended direct-vessel-injection (DEDVI) line break-were conducted. Each group consists of a nitrogen injection test and a nitrogen isolation comparison test with the same break conditions. To assess the nitrogen injection effects, the experimental data that are representative of the system responses and the core safety were compared and analyzed. The results of the comparison show that the effects of nitrogen injection on system responses and core safety are significantly different between the 2-inch and DEDVI breaks. The mechanisms of the different effects on the transient were also investigated. The amount of nitrogen injected, along with its heat absorption, was likewise evaluated in order to assess its effect on the system depressurization process. The results of the comparison and analyses in this study are important for recognizing and understanding the potential negative effects on the passive core cooling performance caused by nitrogen injection during the SBLOCA transient.

The Permeation Behaviors of $H_2S/CH_4$ using Polyimide Hollow Fiber Membranes (폴리이미드 중공사막을 이용한 $H_2S/CH_4$ 투과거동에 관한 연구)

  • Lee, Hyung-Keun;An, Young-Mo;Kim, Dae-Hoon;Jo, Hang-Dae;Seo, Yong-Seog;Park, Yeong-Seong
    • Membrane Journal
    • /
    • v.19 no.4
    • /
    • pp.261-267
    • /
    • 2009
  • Polyimide which is the glassy polymer has high chemical resistance, thermal stability and high mechanical property. In this study, the polyimide hollow fiber membranes were prepared by the dry-jet wet phase inversion in order to investigate the permeation porperties of the $H_2S$ and $CH_4$. The morphology of prepared hollow fiber membranes and their permeation behaviors of $H_2S$ and $CH_4$ before and after silicon coating were evaluated. The permeance of $H_2S$ and $H_2S/CH_4$ selectivity increased due to plasticization with increasing the feed pressure. The permeance of KSM03b and selectivity of KSM03d were highest among the three type membranes used this experiments. The permeance decreased but the $H_2S/CH_4$ selectivity increased with increasing the air gap. The permeance reduced after silicon coating. However, the selectivity increased and the selectivity of KSM03d was 275 at 7 atm.

Study on Laser Cladding of Heat Resisting Steel Using EuTroLoy 16006 Powder(II) - Characteristics of Alloying Elements Distribution of Multi Pass Clad Layer - (EuTroLoy 16006 분말을 이용한 내열강의 레이저 클래딩에 관한 연구(II) - 멀티패스 클래드 층의 합금 성분 분포 특성 -)

  • Kim, Jong Do;Lee, Eun Jin;Kim, Cheol Gyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.4
    • /
    • pp.307-312
    • /
    • 2017
  • Laser cladding has some advantages compared to conventional cladding technologies such as arc welding and thermal spraying. Laser cladding produces a metallurgically well-bonded clad layer with a lower dilution ratio and few defects. Based on the characteristics of a 1-pass clad layer with many parameters, which were investigated in a previous report, it was found that it was essential to overlap a 1-pass clad layer when cladding a large area. In this study, the shape differences of multi-pass clad layers with various overlapping ratios were compared. Then, the alloying element distribution of cladding with a certain overlapping ratio was investigated using EDS and EPMA. As the overlapping ratio increased, the length of the clad decreased and its height increased. In addition, the height of the multi-pass cladding was higher than that of the 1-pass cladding under the same condition. The Fe content of the highly diluted first clad was found to be approximately 20 % in an element analysis. However in the area outside of the first clad, the Fe content was decreased to 10 % as a result of minimum dilution, and a uniform distribution of elements was found.

Performance of Hybrid Solar Still Under Operating Conditions (하이브리드 태양열 해수담수기의 운전 조건별 성능실험)

  • Yeo, Se Dong;Lim, Byung Ju;Yu, Sang Seok;Chung, Kyung Yul;Park, Chang Dae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.8
    • /
    • pp.511-519
    • /
    • 2017
  • In this study, we have performed tests to improve the productivity of hybrid solar stills, which can be operated by solar thermal energy and/or waste heat of exhaust gas from electrical generators. The experimental apparatus is a hybrid solar still with a $1m{\times}2m$ collecting area, which consists of a conventional simple solar still and a vertical multi-effect diffusion(MED) section. The experiments were conducted under various operating conditions, with two identical hybrid solar stills, using solar radiation as the energy source. The results of the tests showed that the yield of the hybrid solar still depends on the various operating conditions. Insulation at the side glasses and a lower basin seawater level increased the productivity of the hybrid solar still. Reflecting fins with less than 47% reflectivity unexpectedly decreased the total productivity. However, the various feeding flow rate of the seawater into MED part did not show clear effects on productivity in the tested range.

Graphoepitaxy of ZnO layers grown on periodic structured Si substrates (주기적 표면 구조의 SiO$_2$ 기판을 이용한 ZnO박막의 Graphoepitaxy)

  • Jung, Jin-U;Ahn, Hyeon-Cheol;Lee, Chang-Yong;Kim, Gwang-Hui;Choi, Seok-Cheol;Lee, Tae-Hun;Park, Seung-Hwan;Jung, Mi-Na;Jung, Myeong-Hun;Lee, Ho-Jun;Yang, Min;Yao, Takafumi;Chang, Ji-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.1
    • /
    • pp.1042-1045
    • /
    • 2005
  • The feasibility of graphoepitaxial growth of compound semiconductor has been studied. Two kinds of substrates were prepared; one is smooth substrate, the other one is a periodic structured substrate. ZnO film was deposited on both substrates by sputtering, and thermal treatment was performed to improve the crystal quality and investigate the effect of the periodic structure. Atomic force microscopy (AFM) and photoluminescence (PL) were used to characterize the samples. As a result, very similarchange, the improvement of crystallinity, has been observed from both samples, except the sample annealed at the highest temperature. It implies the periodic structure affects the crystallinity of the films, and the graphoepitaxy of compound semiconductors is possible by using appropriate surface structure.

  • PDF

Properties of ZnO nanostructures by metal deposited on Si substrates (Metal 증착한 Si 기판 상의 ZnO 나노 구조 특성)

  • Jang, Hyeon-Gyeong;Jung, Mi-Na;Park, Seung-Hwan;Shin, Dae-Hyeon;Yang, Min;Yao, Takafumi;Chang, Ji-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.1
    • /
    • pp.1034-1037
    • /
    • 2005
  • The variation of shapes and related properties of ZnO nanostructures grown on the metal pattern and Si substrate have been investigated. Ni, Cr metal patterns were formed on Si (111) substrates by e-beam evaporation, and ZnO nanostructures were fabricated on it by using thermal evaporation of Zn powder in air. Growth temperature was controlled from 500 $^{\circ}$C to 700 $^{\circ}$C. When the growth temperature was relatively low, no considerable effect was found. However, UV emission intensity decreased, and Green-emission intensity, which is regarded as originated from the defect state in the ZnO nanostructure, increased as growth temperature increase. Also, the variation of nanostructure shape at high temperature (700 $^{\circ}$C) is understood in terms of the enhanced incorporation of metal vapor during the nanostructure formation.

  • PDF