The Permeation Behaviors of $H_2S/CH_4$ using Polyimide Hollow Fiber Membranes

폴리이미드 중공사막을 이용한 $H_2S/CH_4$ 투과거동에 관한 연구

  • Published : 2009.12.30

Abstract

Polyimide which is the glassy polymer has high chemical resistance, thermal stability and high mechanical property. In this study, the polyimide hollow fiber membranes were prepared by the dry-jet wet phase inversion in order to investigate the permeation porperties of the $H_2S$ and $CH_4$. The morphology of prepared hollow fiber membranes and their permeation behaviors of $H_2S$ and $CH_4$ before and after silicon coating were evaluated. The permeance of $H_2S$ and $H_2S/CH_4$ selectivity increased due to plasticization with increasing the feed pressure. The permeance of KSM03b and selectivity of KSM03d were highest among the three type membranes used this experiments. The permeance decreased but the $H_2S/CH_4$ selectivity increased with increasing the air gap. The permeance reduced after silicon coating. However, the selectivity increased and the selectivity of KSM03d was 275 at 7 atm.

폴리이미드는 유리상 고분자로서 높은 화학적 저항성과 열적 안정성을 지니고 있으며, 기계적 물성이 거의 변하지 않는다. 본 연구에서는 황화수소와 메탄의 투과특성을 알아보기 위하여 폴리이미드 중공사막을 건/습식 상전이 공정에 의하여 제조하였고, 제조된 중공사막의 구조 및 실리콘 코팅 전/후의 황화수소와 메탄의 투과특성에 대하여 알아보았다. 압력이 증가함에 따라 황화수소의 투과도는 가소화 현상으로 인해 증가하였고, 황화수소와 메탄의 선택도 역시 증가하는 것으로 나타났다. 실험에 사용된 세 종류의 막 가운데 KSM03b의 투과도와 KSM03d의 선택도가 가장 높은 것으로 나타났다. air gap이 증가 할수록 투과도는 감소하지만 선택도는 증가하였다. 또한 실리콘 코팅 후 투과도는 감소하였지만, 선택도는 증가하였고 7기압에서 KSM03d의 선택도는 275이었다.

Keywords

References

  1. M. Harasimowicz, P. Orluk, G. Zakrzewska-Trznadel and A. G. Chmielewski, 'Application of polyimide membranes for biogas purification and enrichment', J. Hazard. Mater., 144, 698 (2007) https://doi.org/10.1016/j.jhazmat.2007.01.098
  2. J. N. Kim, 'Development of landfill gas application technology', ETIS analysis, 22, 17 (2003)
  3. N. J. Kim, J. M. Choi, and E. J. Ji, 'Solvent selection for the detection of siloxanes in Landfill Gas', J. Korean. Env. Eng., 29(8), 915 (2007)
  4. J. S. Ahn and S. M. Lee, 'A study on the separation characteristics of CH4-CO2 mixed gas by polyimide hollow fiber membrane', HWAHAK KONGHAK, 34 (6), 675 (1996)
  5. D. Y. Choi, S. C. Jang, B. S. Ahn, and D. K. Choi, 'Removal of sulfur compounds from anaerobic digestion gas', J. Korean Ind. Eng. Chem., 19(1), 31 (2008)
  6. J. K. Lee and J. H. Jun, 'Biogas purifying for fuel cell power plant', J. Korean Society of Water and Wastewater, 21(4), 439 (2007)
  7. H. H. Park, B. R. Deshwal, I. W. Kim, and H. K. Lee, 'Absorption of $SO_2$ from flue gas using hollow fiber membranes in a gas-liquid contactor', J. Membr. Sci., 319, 29 (2008) https://doi.org/10.1016/j.memsci.2008.03.023
  8. B. R. Park, J. W. Rhim, S. Y. Lee, T. S. Hwang, and H. K. Lee, 'Membrane surface modification through direct fluorination for gas-liquid contactor', Membrane Journal, 17(4), 345 (2007)
  9. J. Hao and P. A. Rice, 'Upgrading low-quality natural gas with $H_2S$-and $CO_2$-selective polymer membranes. Part II. process design, economics, and sensitivity study of membrane stages with recycle streams', J. Membr. Sci., 320, 108 (2008) https://doi.org/10.1016/j.memsci.2008.03.040
  10. J. S. Kang and S. C. Kil, 'Trend of membrane preparation technology', Tech./Trend Report, KISTI (2002)
  11. Y. Zhang, I. H. Musselman, J. P. Ferraris, and Jr. K. J. Balkus, 'Gas permeability properties of matrimid membranes containing the metal-organic framework Cu-BPY-HFS', J. Membr. Sci., 313, 170 (2008) https://doi.org/10.1016/j.memsci.2008.01.005
  12. J. P. Kim, B. Y. Yeom, and B. R. Min, 'Tech-trend for polymeric gas separation membranes', Polymer Science and Technology, 16(4), 436 (2005)
  13. S. Sridhar, R. S. Veerapur, M. B. Patil, K. B. Gudasi, and T. M. Aminabhavi, 'Matrimid polyimide membranes for the separation of carbon dioxide from Methane', J. Appl. Polym. Sci., 106(3), 1585 (2007) https://doi.org/10.1002/app.26306
  14. H. Y. Zhao, Y. M. Cao, X. L. Ding, M. Q. Zhou, J. H. Liu, and Q. Yuan, 'Poly(ethylene oxide) induced cross-linking modification of matrimid membranes for selective separation of $CO_2$', J. Membr. Sci., 320, 179 (2008) https://doi.org/10.1016/j.memsci.2008.03.070
  15. M. L. Cecopieri-Gomez, J. Palacios-Alquisira, and J. M. Dominguez, 'On the limits gas separation in $CO_2/CH_4$, $N_2/CH_4$, and $CO_2/N_2$binary mixture using polyimide membranes', J. Membr. Sci., 293, 53 (2007) https://doi.org/10.1016/j.memsci.2007.01.034
  16. J. H. Kim, W. I. Shon, S. H. Choi, and S. B. Lee, 'Preparation of asymmetric polyethersulfone hollow fiber membranes for flue gas separation', Membrane Journal, 15(2), 147 (2005)
  17. T. Mohammadi, M. Tavakol Moghadam, M. Saeidi, and M. Mahdyarfar, 'Acid gas permeation behavior through poly(ester urethane urea) membrane', Ind. Eng. Chem. Res., 47, 7361 (2008) https://doi.org/10.1021/ie071493k
  18. Y. Xiao, B. T. Low, S. S. Hosseini, T. S. Chung, and D. R. Paul, 'The strategies of molecular architecture and modification of polyimide-based membranes for $CO_2$ removal from natural gas-A review', Prog. Polym. Sci., 34, 561 (2009) https://doi.org/10.1016/j.progpolymsci.2008.12.004