• 제목/요약/키워드: Thermal dissipation

검색결과 413건 처리시간 0.026초

수열합성법을 이용한 Flower-Like 형상의 Al2O3 Nanostructure 제조 및 BN/Al2O3 복합체의 방열 특성 연구 (Preparation of Flower-Like Al2O3 Nanostructures by Hydrothermal Synthesis and Study of Thermal Properties of BN/Al2O3 Composites)

  • 송노건;정용진
    • 한국전기전자재료학회논문지
    • /
    • 제36권6호
    • /
    • pp.633-637
    • /
    • 2023
  • Recently, with the development of the smart device market, the integration of high-functional devices has increased the heat density, causing overload of the device, and resulting in various problems such as shortened lifespan, performance degradation, and failure. Therefore, research on heat dissipation materials is being actively conducted to realize next-generation electronic products. The heat dissipation material is characterized in that it is easy to dissipate heat due to its high thermal conductivity and minimizes leakage current flowing through the heat dissipation material due to its low electrical conductivity. In this study, flower-shaped Al2O3 and BN composites were engineered with a simple hydrothermal synthesis approach, and their thermal conductivity characteristics were compared and evaluated for each synthesis condition for the application to a heat dissipation material. Spherical BN and flower-shaped Al2O3 were easily obtained, and SEM/EDS analyses confirmed the uniform presence of BN between the Al2O3, and it can be expected that these shapes can affect the thermal conductivity.

이상적인 열방산 효과를 위한 GaN on Diamond 구조의 제안과 접합매개층 종류에 따른 열전달 시뮬레이션 비교 (Suggestion and Design of GaN on Diamond Structure for an Ideal Heat Dissipation Effect and Evaluation of Heat Transfer Simulation as Different Adhesion Layer)

  • 김종철;김찬일;양승한
    • 한국전기전자재료학회논문지
    • /
    • 제30권5호
    • /
    • pp.270-275
    • /
    • 2017
  • Current progress in the development of semiconductor technology in applications involving high electron mobility transistors (HEMT) and power devices is hindered by the lack of adequate ways todissipate heat generated during device operation. Concurrently, electronic devices that use gallium nitride (GaN) substrates do not perform well, because of the poor heat dissipation of the substrate. Suggested alternatives for overcoming these limitations include integration of high thermal conductivity material like diamond near the active device areas. This study will address a critical development in the art of GaN on diamond (GOD) structure by designing for ideal heat dissipation, in order to create apathway with the least thermal resistance and to improve the overall ease of integrating diamond heat spreaders into future electronic devices. This research has been carried out by means of heat transfer simulation, which has been successfully demonstrated by a finite-element method.

위성 PCB 열해석을 위한 고 전력소산 소자의 모델링 연구 (A Study of High-Power Dissipation Parts Modeling for Spacecraft PCB Thermal Analysis)

  • 이미현;장영근;김동운
    • 한국항공우주학회지
    • /
    • 제34권6호
    • /
    • pp.42-50
    • /
    • 2006
  • 본 논문에서는 위성의 전장보드 열해석을 위한 최적의 열모델링 방법을 제안하였다. 플레이트 모델링 방법을 통한 보드 모델링에 고전력 소산 소자의 외부 및 내부 구조를 직접 모델링하는 방법을 새롭게 제안하였다. 이러한 모델링 방법을 다른 모델링과 비교 분석하여 효율성을 검토하였고 열진공 시험을 통해 검증하였다. 제시한 소자 모델링 방법으로 HAUSAT-2의 발열이 큰 통신보드의 열해석을 수행한 결과, 노드 네트워크 모델링 방법과 플레이트 모델링 방법의 단점을 모두 보완할 수 있었다. 또한, 소자 모델링 방법은 열적인 문제에 따른 소자 수준의 해결방안을 모색 후, 그에 따른 열해석을 수행하여 효과를 예측할 수 있으므로 열제어계 설계에도 효율적이다.

LED조명에서 MPCB와 FPCB의 방열 성능 비교 연구 (Comparisons of the Heat Dissipation Performances of MPCB and FPCB in LED Lights)

  • 신상묵;문덕영;유경선;현동훈
    • 한국생산제조학회지
    • /
    • 제26권4호
    • /
    • pp.371-377
    • /
    • 2017
  • In this study, the heat dissipation performances of metal printed circuit boards (MPCBs) and flexible printed circuit boards (FPCBs) used in light-emitting diode (LED) lights were compared and analyzed by performing a heat dissipation simulation using a thermal flow analysis program. The results were summarized graphically. The temperature distribution of the MPCB was found to be better than that of the FPCB, indicating the better heat dissipation performance of the MPCB. For the two FPCB structures studied, we confirmed the LED temperature and temperature distribution by thermal flow analysis and found that for better overall heat dissipation performance, PCBs should preferably have an asymmetric structure. We confirmed the possibility of using FPCBs, which are characterized by a flexible structure, for LED lighting.

적외선 열화상을 활용한 리튬 이온 ESS의 방열설계 성능평가에 관한 연구 (A Performance Evaluation of a Heat Dissipation Design for a Lithium-Ion Energy Storage System Using Infrared Thermal Imaging)

  • 김은지;이경일;김재열
    • 한국기계가공학회지
    • /
    • 제19권5호
    • /
    • pp.105-110
    • /
    • 2020
  • The global battery market is rapidly growing due to the development of vehicles(EV) and wireless electronic products. In particular logistics robots, which hielp to produce EVs, have attracted much interest in research in Korea Because logistics sites and factories operate continuously for 24 hours, the technology that can dramatically increase the operation time of the logistics equipment is rapidly developing, and various high-level technologies are required for the batteries used in. for example, logistics robots. These required technologies include those that enable rapid battery charging as well wireless charging to charge batteries while moving. The development of these technologies, however, result in increasing explosions and topical accidents involving rapid charging batteries These accidents due to the thermal shock caused by the heat generated during the charging of the battery cell. In this study, a performance evaluation of a heat dissipation design using infrared thermal imaging was performed on an energy storage systrm(Ess) applied with an internal heat conduction cooling method using a heating plate.

HDU를 이용한 적외선 LED CCTV의 LED 수명 향상을 위한 방열설계에 관한 연구 (A Study on Design of a Heat Dissipation to Improve the LED Lifetime for IR LED CCTV Using the HDU)

  • 이동규;김형진;곽준섭
    • 한국전기전자재료학회논문지
    • /
    • 제27권10호
    • /
    • pp.673-677
    • /
    • 2014
  • In this paper, thermal analysis of HDU (Heat Dissipation Unit) for infrared CCTV is performed by using SolidWorks Simulation (Thermal analysis) package, in order to change the part materials and HDU shape is optimized. Furthermore, HDU disperses the aggregated heat around the LED inside the housing. The junction temperature of infrared LED checked by HDU check was $65.83^{\circ}C$, $42.02^{\circ}C$, respectively. In addition, the Thermoelement by changing the shape of the HDU was possibly designed and equipped with. Comparison with simulation and prototype measurement results, without HDU model was $65.83^{\circ}C$, $61.99^{\circ}C$, respectively. In addition to with HDU model was $42.02^{\circ}C$, $39.01^{\circ}C$, respectively. Only HDU mounted into infrared CCTV is usable in the ordinary house or outdoors. Also HDU with thermal element, fan mounted into infrared CCTV is usable in a blast furnace workplace or high temperature workplace.

산화아연 피뢰기 소자의 열적 특성 향상을 위한 연구 (A study on the improvement of the thermal properties of ZnO arrester blocks)

  • 김동성;이수봉;이승주;김동규;양순만;이복희
    • 한국조명전기설비학회:학술대회논문집
    • /
    • 한국조명전기설비학회 2009년도 추계학술대회 논문집
    • /
    • pp.335-338
    • /
    • 2009
  • In this study, in order to investigate the thermal and electrical properties of ZnO arrester block against 60[Hz] AC voltage, the changes in leakage current were measured. The temperature distribution appearing on the ZnO arrester blocks was observed using a forward looking infrared camera. In particular, the correlation between the thermal and electrical properties of a ZnO arrester block was analyzed experimentally. From this analysis, the thermal phenomena resulting from the heat generation and dissipation of the ZnO arrester block were interpreted. The degradation and thermal runaway phenomena of ZnO arrester block are closely related to the temperature limit of the ZnO arrester block. The installation of an additional metal electrode has resulted in the decrease of the leakage current due to the heat dissipation.

  • PDF

FPGA 열제어용 히트싱크 효과의 실험적 검증 (Experimental Verification of Heat Sink for FPGA Thermal Control)

  • 박진한;김현수;고현석;진봉철;서학금
    • 한국항공우주학회지
    • /
    • 제42권9호
    • /
    • pp.789-794
    • /
    • 2014
  • 정지궤도급 차세대 통신위성에 탑재될 디지털신호처리기에는 디지털 고속통신을 위한 FPGA가 사용된다. 적용된 FPGA는 높은 열소산량을 가지고 있으며, 이로 인한 접합온도의 상승은 부하경감 요구조건을 만족하기 어렵고 장비의 수명과 신뢰도 저하의 주요 원인이다. 지상과는 달리 우주환경에서의 전장품의 열제어는 대부분 열전도를 통하여 이루어지고 있다. CCGA 또는 BGA 형태의 FPGA는 인쇄회로기판에 장착되지만, 인쇄회로기판의 열전도율은 FPGA의 열제어에 효율적이지 못하다. FPGA의 열제어를 위하여 부품 리드와 하우징을 직접 연결하는 히트싱크를 제작하였으며, 우주인증레벨의 열진공시험을 통하여 그 성능을 확인하였다. 높은 전력소모량을 가진 FPGA는 우주환경에 적용하기 어려웠으나, 히트싱크를 적용함으로써 부하경감 온도 마진을 확보하였다.

LED 패키지에서 에폭시 몰드가 방열특성에 미치는 영향 (Effect of the Epoxy Mold on the Thermal Dissipation Behavior of LED Package)

  • 방영태;문철희
    • 조명전기설비학회논문지
    • /
    • 제26권2호
    • /
    • pp.1-7
    • /
    • 2012
  • LED package with 4[mm]-height mold was manufactured and the surface temperature was measured directly using both thermocouple and thermal infrared (IR) camera. FVM simulation was conducted to estimate the surface temperature of the same LED package under the same condition, by which the accuracy of the simulation was secured. Then, the effects of the height and thermal conductivity of the mold on the junction temperature of the LED package were investigated by FVM simulation. The results showed that the junction temperature decreased by 10[$^{\circ}C$] when the mold height was 3~5[mm], but the thermal conductivity of the mold didn't affect the junction temperature significantly.

IT 모듈에서의 열전달 해석과 방열 특성 연구 (Thermal Dissipation Study of IT Module Simulation)

  • 김원종
    • 한국산업융합학회 논문집
    • /
    • 제23권3호
    • /
    • pp.427-431
    • /
    • 2020
  • In this Study, as the structure of IT module for smart phone display becomes thin to catch up with slim product trend, the reliability of display module is on the rise as a issue for product design. Especially, almost part of cellular phone should undergo thermal dissipation test. thus many manufacturers have considered design guide line using CAE and simulation for more effective usage of limited resources on the market. This test simulates the case when cellular phone slips through user's fingers while he is talking on the phone. This paper studies a thermal simulation of display module in smart phone. This design for reliability improvements are suggested on the basis of the results of FVM Analysis and display of IT module and smart phone design.