• Title/Summary/Keyword: Thermal dissipation

Search Result 413, Processing Time 0.026 seconds

Study on Diagnosis for Transformers by Tan $\delta$ and Moisture of Insulation Oil According to Thermal Aging (절연유의 열열화에 따른 Tan $\delta$와 수분의 변화에 의한 변압기의 예방진단 연구)

  • HwangBo, Seung;Han, Min-Koo;Kwak, Hee-Ro;Kim, Jae-Chul
    • Proceedings of the KIEE Conference
    • /
    • 1988.11a
    • /
    • pp.241-245
    • /
    • 1988
  • This paper reports the experiments regarding to diagnosis techniques for power transformers by measuring dissipation factor and moisture contents of mineral oils. Thermal aging environments of mineral oils were varied by the specially designed systems. Thermal aging of elevated temperature of $90^{\circ}C$ was performed for about 240 and 460 hours, respectively. Dissipation factor, permittivity, and water content were measured. Our test samples were not exposed to air. Dissipation factor increased while permittivity did not change. The level of dissipation factor determining the insulating quality of mineral oil was compared with the previous results of resistivity and several correction factor.

  • PDF

Study on the Thermal Dissipation Characteristics of 16-chip LED Package with Chip Size (16칩 LED 패키지에서 칩 크기에 따른 방열특성 연구)

  • Lee, Min-San;Moon, Cheol-Hee
    • Journal of the Korean Vacuum Society
    • /
    • v.21 no.4
    • /
    • pp.185-192
    • /
    • 2012
  • p-n junction temperature and thermal resistance of Light Emitting Diode (LED) package are affected by the chip size due to the change of the thermal density and the external quantum efficiency considering the heat dissipation through conduction. In this study, forward voltage was measured for two different size LED chips, 24 mil and 40 mil, which consist constitute 16-chip package. p-n junction temperature and thermal resistance were determined by thermal transient analysis, which were discussed in connection with the electrical characteristics of the LED chip and the structure of the LED package.

The Paint Prepared Using 2D Materials: An Evaluation of Heat Dissipation and Anticorrosive Performance

  • Bhang, Seok Jin;Kim, Hyunjoong;Shin, An Seob;Park, Jinhwan
    • Corrosion Science and Technology
    • /
    • v.19 no.1
    • /
    • pp.23-30
    • /
    • 2020
  • Heat sinks are most widely used in thermal management systems; however, the heat dissipation efficiency is usually limited. Therefore, in order to increase heat dissipation efficiency of the heat sink, the heat-dissipating paint using 2D materials (hexagonal boron nitride (h-BN) and graphene) as thermally conductive additive was designed and evaluated in the present study. The heat dissipation performance of the paint was calculated from temperature difference between the paint-coated and -uncoated specimens mounted on the heat source. The highest heat dissipation performance was obtained when the ratio of h-BN to resin was 1/10 in the paint. In addition, further reduction in the temperature of the test specimen by 6.5 ℃ was achieved. The highest heat dissipation performance of the paint prepared using graphene was achieved at a 1/50 ratio of graphene to the resin, and a 6.5 ℃ reduction was attained. In addition, graphene exhibited enhanced corrosion resistance property of heat-dissipating paint by inhibiting the growth of the paint blisters.

Effect of the Energy of Extrusion on the Starch Gelatinization (압출성형 에너지가 녹말의 호화에 미치는 영향)

  • Chung, Moon-Young;Lee, Seung-Ju
    • Korean Journal of Food Science and Technology
    • /
    • v.29 no.1
    • /
    • pp.72-76
    • /
    • 1997
  • The effect of the energy supplied in extrusion on the starch gelatinization was analyzed. The energy needed for extrusion is generated by motor and heater. The motor energy is transformed into a thermal energy by heat dissipation and a mechanical energy, and the heater energy is of a thermal energy. At the low barrel temperature $({\leq}80^{\circ}C)$, it was found out there are two kinds of thermal energy by heat dissipation: one by a powder friction of corn grit with low moisture contents and the other by a viscous dissipation of corn grit with high moisture contents. The dissipated thermal energy by the powder friction was more effective on the starch gelatinization than that by the viscous dissipation. The effect of the mechanical energy was also analyzed in terms of a relative mechanical energy. The gelatinization of corn grit with high moisture contents $({\geq}33%)$ largely depended on the change in the relative mechanical energy, whereas that with low moisture contents $({\leq}30%)$ hardly depended on it.

  • PDF

Thermal Analysis for Improvement of Heat Dissipation Performance of the Rail Anchoring Failure Detection Module (레일 체결구 결함 검측 모듈의 방열성능 개선을 위한 열 해석)

  • Chae, Won kyu;Park, Young;Kwan, Sam young;Lee, Jaehyeong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.2
    • /
    • pp.125-130
    • /
    • 2016
  • In this paper, various heat dissipation designs for a rail anchoring failure detection module were investigated by a thermal flow analysis. For the detection module with the heat dissipation design on the overall housing surface, an average temperature inside the module was lowered by $25^{\circ}C$ when compared to no heat dissipation design. In addition, an internal heat-flow blocking layer and an heat conduction layer inserted between the LED module and housing case were effective in reducing the temperature in the rail anchoring failure detection, which has a limited space for installation and little air flow. Especially, the temperature near LED module decreased below $55^{\circ}C$ when the optimal heat dissipation design was applied.

Effects of Viscous Dissipation on the Thermal Instability of Plane Couette Flow Heated from Below (밑으로부터 가열되는 평면 Couette 유동에서 점성소산이 열적 불안정성에 미치는 영향)

  • Yoo, Jung Yul;Park, Young Moo
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.17 no.4
    • /
    • pp.489-498
    • /
    • 1988
  • An analysis has been given for the effect of viscous dissipation on the thermal instability of plane Couette flow between two parallel plates maintained at different constant temperatures. Under the assumption that the principle of the exchange of stabilities holds, stationary disturbance quantities in the form of longitudinal vortices are considered. The magnitudes of disturbance quantities are then represented as fast convergent power series so that the eigenvalue problem for determining the onset conditions of the thermal instability may be reduced to a simplified problem of finding the roots of a $4{\times}4$ determinant. It is shown that as the magnitude of the visucous dissipation increases the flow becomes more susceptible to instabilities, which is in very good agreement with previous results obtained in some related researches.

  • PDF

Thermal Dissipation Characteristics of Multi-Chip LED Packages (멀티 칩 LED 패키지의 방열 특성)

  • Kim, Byung-Ho;Moon, Cheol-Hee
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.12
    • /
    • pp.34-41
    • /
    • 2011
  • In order to understand the thermal performance of each LED chips in multi-chip LED package, a quantitative parametric analysis of the temperature evolution was investigated by thermal transient analysis. TSP (Temperature Sensitive Parameter) value was measured and the junction temperature was predicted. Thermal resistance between the p-n junction and the ambient was obtained from the structure function with the junction temperature evolution during the cooling period of LED. The results showed that, the thermal resistance of the each LED chips in 4 chip-LED package was higher than that of single chip- LED package.

EFFICIENT THERMAL MODELING IN DEVELOPMENT OF A SPACEBORNE ELECTRONIC EQUIPMENT

  • Kim Jung-Hoon;Koo Ja-Chun
    • Bulletin of the Korean Space Science Society
    • /
    • 2004.10b
    • /
    • pp.270-273
    • /
    • 2004
  • The initial thermal analysis needs to be fast and efficient to reduce the feedback time for the optimal electronic equipment designing. In this study, a thermal model is developed by using power consumption measurement values of each functional breadboard, that is, semi-empirical power dissipation method. In modeling heat dissipated EEE parts, power dissipation is imposed evenly on the EEE part footprint area which is projected to the printed circuit board, and is called surface heat model. The application of these methods is performed in the development of a command and telemetry unit (CTU) for a geostationary satellite. Finally, the thermal cycling test is performed to verify the applied thermal analysis methods.

  • PDF