• Title/Summary/Keyword: Thermal cycles

Search Result 494, Processing Time 0.03 seconds

Effect of Welding Thermal Cycle on Microstructure and Pitting Corrosion Property of Multi-pass Weldment of Super-duplex Stainless Steel (슈퍼 듀플렉스 스테인리스강 다층용접부의 미세조직 및 공식(Pitting Corrosion)에 미치는 용접열사이클의 영향)

  • Nam, Seong-Kil;Park, Se-Jin;Na, Hye-Sung;Kang, Chung-Yun
    • Journal of Welding and Joining
    • /
    • v.28 no.4
    • /
    • pp.18-25
    • /
    • 2010
  • Super-duplex stainless steels (SDSS) have a good balance of mechanical property and corrosion resistance when they consist of approximately equal amount of austenite and ferrite. The SDSS needs to avoid the detrimental phases such as sigma(${\sigma}$), chi(${\chi}$), secondary austenite(${\gamma}2$), chromium carbide & nitride and to maintain the ratio of ferrite & austenite phase as well known. However, the effects of the subsequent weld thermal cycle were seldom experimentally studied on the micro-structural variation of weldment & pitting corrosion property. Therefore, the present study investigated the effect of the subsequent thermal cycle on the change of weld microstructure and pitting corrosion property at $40^{\circ}C$. The thermal history of root side was measured experimentally and the change of microstructure of weld root & the weight loss by pitting corrosion test were observed as a function of the thermal cycle of each weld layer. The ferrite contents of root weld were reduced with the subsequent weld thermal cycles. The pitting corrosion was occurred in the weld root region in case of the all pitted specimen & in the middle weld layer in some cases. And the weight loss by pitting corrosion was increased in proportional to the time exposed at high temperature of the root weld and also by the decrease of ferrite content. The subsequent weld thermal cycles destroy the phase balance of ferrite & austenite at the root weld. Conclusively, It is thought that as the more subsequent welds were added, the more the phase balance of ferrite & austenite was deviated from equality, therefore the pitting corrosion property was deteriorated by galvanic effect of the two phases and the increase of 2nd phases & grain boundary energy.

Subjective Hand and Physical Properties of Tricot based Artificial Suede according to Raising Finish (기모가공 조건에 따른 트리코 기포 인조 스웨이드의 태와 물성)

  • Roh, Eui Kyung;Oh, Kyung Wha
    • Fashion & Textile Research Journal
    • /
    • v.16 no.1
    • /
    • pp.153-159
    • /
    • 2014
  • This study evaluates the changes of the subjective hand, preference, comfort and mechanical properties of tricot based artificial suede made from sea-island type micro fibers according to raising condition. The subjective hand and the preference of raised suede for jacket were rated by the 20's and 30's women experts according to raising cycles. Comfort properties were evaluated by air permeability, water vapor transmission, and thermal transmission. Mechanical properties were measured by the KES-FB system. The subjective hand of artificial suede was categorized into three hand factors: smoothness, warmness and thickness. Smoothness, warmness and thickness perception increased with raising cycles which affected hand preference and luxuriousness perception. The thickness and wale density of suede increased with the number of raising. Suede became more compact and less pliable and less stretchable due to increased fabric thickness; in addition, the surface of suede became smoother and compressive since the surface evenness of suede improved with smaller fiber fineness and an increased amount of naps covered the base fabric. Furthermore, water vapor transmission decreased and thermal insulation increased. The best raising conditions for artificial suede was four cycles in which artificial suede was preferred without changes in physical properties.

Thermal Fatigue Test of an Annular Structure

  • Hwang Jeong-Ki;Suh Chang-Min;Kim Chae-Ho
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.1
    • /
    • pp.59-65
    • /
    • 2006
  • A half-scaled large test model for the main components of the real annular structure was built and the thermal behaviors were experimented and obtained by thermal cyclic loads. The model design and the test conditions for the thermal loads were determined to take into consideration the thermal and mechanical loads acting on the real annular structure by finite element analyses. Temperature profiles and strains of the main components of the model were measured at an early stage of the test and periodically throughout the test in the given test conditions. After completion of the thermal cyclic tests, no evidence of crack initiation and propagation were identified by a dye penetration test. The measured strains at the critical parts were slightly increased proportionally with the increase in the number of the thermal cycles.

The Interfacial Reactions and Reliability of SnAgCu Solder Joints under Thermal Shock Cycles (열충격 사이클에 따른 SnAgCu 솔더별 솔더 접합부의 신뢰성 및 계면반응)

  • Oh, Chulmin;Park, Nochang;Han, Changwoon;Bang, Mansoo;Hong, Wonsik
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.8
    • /
    • pp.500-507
    • /
    • 2009
  • Pb-free solder has recently been used in electronics in efforts to meet environmental regulations, and a number of Pb-free solder alloy choices beyond the near-eutectic SnAgCu solder are now available. With increased demand for thin and portable electronics, the high cost of alloys containing significant amounts of silver and their poor mechanical shock performance have spurred the development of low Ag SnAgCu solder, which provides improved mechanical performance at a reasonable cost. Although low Ag SnAgCu solder exhibits significantly higher fracture resistance under high-strain rates, little thermal fatigue data exist for this solder. Therefore, it is necessary to investigate thermal fatigue reliability of low Ag SnAgCu solder under variation of thermal stress in order to allow its implementation in electronic products with high reliability requirements. In this study, the reliability of Sn0.3Ag0.7Cu(SAC0307), a low Ag solder alloy, is discussed and compared with that of Sn3Ag0.5Cu(SAC305). Three sample types and six samples size are evaluated. Mechanical properties and microstructure of the solder joint are investigated under thermal shock cycles. It was observed that the mechanical strength of SAC0307 dropped slightly with thermal cycling relative to that of SAC305. This reveals that the failure mode of SAC0307 is different from that SAC305 under this critical condition.

Effects of hardness values on the creep rupture strength in a Mod. 9Cr1Mo Steel (Mod. 9Cr1Mo 강의 크리프 강도에 미치는 경도의 영향)

  • Lee, Yeon-Su;Yu, Seok-Hyeon;Gong, Byeong-Uk;Kim, Jeong-Tae
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.637-642
    • /
    • 2003
  • The Modified 9Cr-1Mo steel identified as T91, P91 and F91 in the ASME specification has been widely used for the construction of modern power plants. The available data on the influence of process parameters during manufacturing and fabrication on its properties are not sufficient. In this study, the influence of various thermal cycles on the hardness and the creep rupture strength was analyzed in the base metal and the weldments made in tube and pipe of a Mod.9Cr-1Mo steel. The low hardness, 155Hv, showed low creep rupture strength below the allowable stresses of T91 base metal in the ASME specification. This low value was attributed to the fully recovered dislocation structure and the weakening of precipitation hardening associated with the abnormal thermal cycles.

  • PDF

A study on the Dislocation-Free Shallow Trench Isolation (STI) Process (Dislocation-Free Shallow Trench Isolation 공정 연구)

  • Yoo, Hae-Young;Kim, Nam-Hoon;Kim, Sang-Yong;Lee, Woo-Sun;Chang, Eui-Goo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.84-85
    • /
    • 2005
  • Dislocations are often found at Shallow Trench Isolation (STI) process after repeated thermal cycles. The residual stress after STI process often leads defect like dislocation by post STI thermo-mechanical stress. Thermo-mechanical stress induced by STI process is difficult to remove perfectly by plastic deformation at previous thermal cycles. Embedded flash memory process is very weak in terms of post STI thermo-mechanical stress, because it requires more oxidation steps than other devices. Therefore, dislocation-free flash process should be optimized.

  • PDF

Coupling shape-memory alloy and embedded informatics toward a metallic self-healing material

  • Faravelli, Lucia;Marzi, Alessandro
    • Smart Structures and Systems
    • /
    • v.6 no.9
    • /
    • pp.1041-1056
    • /
    • 2010
  • This paper investigates the possibility of a strategy for an automatic full recover of a structural component undergoing loading-unloading (fatigue) cycles: full recover means here that no replacement is required at the end of the mission. The goal is to obtain a material capable of self healing earlier before the damage becomes irreversible. Attention is focused on metallic materials, and in particular on shape memory alloys, for which the recovering policy just relies on thermal treatments. The results of several fatigue tests are first reported to acquire a deep understanding of the physical process. Then, for cycles of constant amplitude, the self-healing objective is achieved by mounting, on the structural component of interest, a suitable microcontroller. Its input, from suitable sensors, covers the current stress and strain in the alloy. The microcontroller elaborates from the input the value of a decisional parameter and activates the thermal process when a threshold is overcome.

Characteristics of Hydrogen Storage Alloy powder Compacts Using Polymer Binders (고분자 결합제를 이용한 수소저장합금 분말 성형체의 특성)

  • Kim, Chan-Jung;Kim, Dai-Ryong
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.10 no.2
    • /
    • pp.81-89
    • /
    • 1999
  • Various characteristics - mechanical propertis, thermal cyclic hydriding characteristics and resistance to degradation by $H_2O$, CO in hydrogen - of hydrogen storage alloy powder compacts using PTFE and silicon sealant as a polymer binder were studied. Diametral tensile strength of 10wt% PTFE and 5wt% silicon sealant added compacts showed relatively high value of $4kg/cm^2$ and $10kg/cm^2$, respectively. Compacts show a good resistance to degradation by $H_2O$ in hydrogen. But hydrogen absorption rate and capacity of compacts were decreased by CO in hydrogen with the number of cycles. Cu coated and PTFE bonded compacts showed very small decrease of capacity and a good strength even after 1000 cycles of thermal hydriding and dehydriding.

  • PDF

Efforts of Specimen Sizes on Crack Opening Displacement (COD) for Submerged Arc Weldments of Fine Grained Steel (미세립강 잠호 용접부의 COD에 미치는 시편 크기의 영향)

  • 윤중근;김대훈;김문일
    • Journal of Welding and Joining
    • /
    • v.1 no.2
    • /
    • pp.53-60
    • /
    • 1983
  • COD test based on fracture mechanics concept was used in this study to evaluate the fracture toughness quantitatively. Effects of specimen sizes on critical COD value for ABS EH 36 steel and its submerged arc weldments, and the variation of critical COD value depending on metallurgical/mechanical heterogeneities caused by weld thermal cycles were investigated. Experiment was performed by using specimens made from base metal and submerged arc weldments according to BS 5762. Obtained results are summarized as follows; 1) Critical COD value for base metal decreases with increasing thickness of specimen. On hand, as the reduction ratio of critical COD decreases with increasing specimen thickness, critical COD value becomes constant above a thickness of specimen. 2) Critical COD value for weldment decreases with increasing thickness of specimen and was also affected by metallurgical states of base metal. 3) Size effects for weldment was greater at the hardened region. 4) Critical COD value was affected by microstructural change due to weld thermal cycles in weldments; that is, accicular ferrite formation is favorable for increasing of COD value.

  • PDF

Using Lamb Waves to Monitor Moisture Absorption in Thermally Fatigued Composite Laminates

  • Lee, Jaesun;Cho, Younho
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.36 no.3
    • /
    • pp.175-180
    • /
    • 2016
  • Nondestructive evaluation for material health monitoring is important in aerospace industries. Composite laminates are exposed to heat cyclic loading and humid environment depending on flight conditions. Cyclic heat loading and moisture absorption may lead to material degradation such as matrix breaking, debonding, and delamination. In this paper, the moisture absorption ratio was investigated by measuring the Lamb wave velocity. The composite laminates were manufactured and subjected to different thermal aging cycles and moisture absorption. For various conditions of these cycles, not only changes in weight and also ultrasonic wave velocity were measured, and the Lamb wave velocity at various levels of moisture on a carbon-epoxy plate was investigated. Results from the experiment show a linear correlation between moisture absorption ratio and Lamb wave velocity at different thermal fatigue stages. The presented method can be applied as an alternative solution in the online monitoring of composite laminate moisture levels in commercial flights.