• Title/Summary/Keyword: Thermal cracks

Search Result 446, Processing Time 0.028 seconds

Crack Initiation and Propagation at the Gas Turbine Blade with Antioxidation and Thermal Barrier Coating (내산화 및 열차폐 코팅처리 가스터빈 블레이드의 균열거동)

  • Kang, Myung-Soo;Kim, Jun-Sung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.12
    • /
    • pp.99-106
    • /
    • 2010
  • Gas turbines operation for power generation increased rapidly since 1990 due to the high efficiency in combined cycle, relatively low construction cost and low emission. But the operation and maintenance cost for gas turbine is high because the expensive superalloy hot gas path parts should be repaired and replaced periodically This study analyzed the initiation and propagation of the crack at the gas turbine blades which are coated with MCrAIY as a bond coat and TBC as a top coat. The sample blades had been serviced at the actual gas turbines for power generation. Total 7 sets of blades were analyzed and they have different EOH(equivalent operation hour). Blades were sectioned and the cracking distribution were measured and analyzed utilizing SEM(scanning electron microscope) and optical microscope. The blades which had 52,000 EOH of operation had cracks at the substrate and the maximum depth was 0.2 mm. Most of the cracks initiated at the boundary layer between TBC and bond coat and propagated down to the bond coat. Once bond coat is cracked, the base metal is exposed to the oxidation condition and undergoes notch effect. Under this environment, the crack branched at the inter-diffusion layer and propagated to the substrate. Critical cracks affecting the blade life were analyzed as those on suction side and platform.

The behavior of WO3 Thin Film on NiO Addition (NiO를 첨가한 WO3 박막의 미세 구조 거동)

  • Kim Gwang-Ho;Na Dong-Myong;Choi Gwang-Pyo;Park Jin-Seong
    • Korean Journal of Materials Research
    • /
    • v.15 no.7
    • /
    • pp.486-490
    • /
    • 2005
  • Thin films of tungsten oxide and nickel oxide were deposited on $Al_2O_3/Si-substrate$ by high vacuum thermal evaporation. The properties of microstructure and crystallinity were analyzed by SEM and XRD respectively. $WO_3$ films without addition of NiO showed polycrystalline structure after annealing at $500^{\circ}C$ for SO min. There were the cracks between the polycrystalline grains and the crack width was increased with the thickness of $WO_3$ films. The cracks in the $WO_3$ films could be controlled by an optimum deposition of NiO on $WO_3$ films and either less or more than the optimum addition fails to suppress the cracks. A process mechanism to suppress the crack has been discussed.

Analysis of the Causes of Cracks in Rocket Propellant in Thermal Cycling Test (로켓탄 추진기관 온도반복시험 균열 원인분석)

  • Bak, Jin Man;Park, Soon Woo
    • Journal of Korean Society for Quality Management
    • /
    • v.51 no.4
    • /
    • pp.735-749
    • /
    • 2023
  • Purpose: The purpose of this study is to derive solutions and prevent similar cases from occurring by analyzing the causes of cracks found in temperature cycling tests of rocket motor. Methods: By combining the results of the current state confirmation test, non-destructive test, domestic and foreign rocket motor comparison test, cutting test, and adhesion test according to the number of times to apply mold release agent, a Cause and Effect Diagram analysis was performed to derive the cause of cracks. Results: Through this study, 26 factors that could cause cracking in rocket motors during temperature cycling tests were identified. Through various additional test results, a total of five causes were identified, including chemical and structural design of the joint between the propellant and stress relief insert, omission of procedure in the manufacturing procedures, natural aging due to temperature, and load accumulation due to temperature changes. The fundamental cause was confirmed to be insufficient consideration of the release properties of the propellant and stress relief insert. Conclusion: During the design process, it was confirmed that this could be solved by structurally or chemically designing the insert so that it does not combine with the propellant, or by applying a mold release agent during the manufacturing process.

Cracks in Tape Cast Oxide Laminar Composites (테이프 캐스팅 산화물 층상 복합체에서의 균열)

  • Kim, Ji-Hyun;Yang, Tae-Young;Lee, Yoon-Bok;Yoon, Seog-Young;Park, Hong-Chae
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.5
    • /
    • pp.484-489
    • /
    • 2002
  • Hot-pressure sintered laminar composites with alumina/zirconia or mullite/zirconia as an outer layer and alumina/zircon (resulting in reaction-bonded mullite/zirconia during sintering) as an inner layer were fabricated by tape casting and lamination. Various forms of crack were observed in sintered laminar composites, these cracks included channel cracks in the outer layer, transverse cracks in the inner layer and interface cracks debonding interlayer. Based on detailed microscopic observations, the cracks were attributed to thermal expansion mismatch between the oxides consisting of the each layer. In particular, the interlayer and transverse cracks were confirmed in the laminates consisted of the mullite/zirconia system as the outer layers, however, those cracks were not observed in the alumina/zirconia system used. In addition, the crack propagation did not exhibit same behavior in the two kinds of outer layer when the indentation load was applied.

A Study on the Effect of the Shrinkage Strip on Shrinkage and Thermal Change of Concrete (건조수축 및 온도영향에 대한 건조수축대의 효과 연구)

  • 김록배;김욱종;이도범;이운세
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.251-256
    • /
    • 2001
  • Shrinkage during the curing and drying of concrete is unavoidable and results in many cracks. Shrinkage strips reduce effectively shrinkage stresses and minimize shrinkage cracks by being left open for a certain time during construction allow a significant part of the shrinkage to occur without inducing stresses. This study verifies the effectiveness of shrinkage strips and provides the guide for construction of such strips.

  • PDF

A Study on the Effect of the Shrinkage Strip on Shrinkage and Thermal Change of Concrete in the Underground Parking Structure (공동주택 지하주차장의 건조수축 및 온도영향에 대한 수축대의 효과 연구)

  • 김록배;김욱종;이도범;이운세
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.827-832
    • /
    • 2001
  • Shrinkage during the curing and drying of concrete is unavoidable and results in many cracks. Shrinkage strips reduce effectively shrinkage stresses and minimize shrinkage cracks by being left open for a certain time during construction to allow a significant part of the shrinkage to occur without inducing stresses. This study verifies the effectiveness of shrinkage strips and provides the guide for construction of such strips.

  • PDF

고속전철용 디스크 브레이크의 열탄성 마멸에 관한 수치적 연구

  • 황준태;김청균
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.269-275
    • /
    • 1999
  • This paper presents the results of thermoelastic wear phenomena in ventilated disk brakes for a high-speed train using finite element method. The computed results show that the sinusoidal distortions due to non-uniform distributions of temperature profiles may lead to thermoelastic wears at the rubbing surface. This may decrease the life of a disk brake and produce micro-cracks, noise and squeals between two rubbing surfaces.

  • PDF

Finite Element Analysis on the Thermoelastic Wear Behaviors for a High-Speed Disk Brake (고속용 디스크 브레이크의 열탄성 마멸거동에 관한 유한요소해석)

  • 이일권;김청균
    • Tribology and Lubricants
    • /
    • v.15 no.4
    • /
    • pp.291-296
    • /
    • 1999
  • This paper presents the results of thermoelastic wear behaviors in ventilated disk brakes for a high-speed automotive and train using the finite element method. The computed results show that the sinusoidal distortions due to non-uniform distributions of temperature profiles may lead to thermoelastic wears on the rubbing surface. This may decrease the service life of a disk brake and produce micro-cracks, noise and squeals between two rubbing surfaces.

Determination of Thermal Shock Stress Intensity Factor for Elliptical Crack by Modified Vainshtok Weight Function Method (수정 Vainshtok 가중함수법에 의한 타원균열의 열충격 응력세기계수의 결정)

  • 이강용;김종성
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.2
    • /
    • pp.463-474
    • /
    • 1995
  • Modified Vainshtok weight function method is developed. The thermal shock stress intensity factors for elliptical surface cracks existed in the thin and thick walled cylinders are determined. The present results are compared with previous solutions and shown to be good agreement with them.

An Analytic Study on the Contact Stress and Thermal Stress of Rails (레일의 라체팅에 미치는 접촉응력 및 열응력에 대한 해석적 연구)

  • Goo, Byeong-Choon;You, Won-Hee
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.767-774
    • /
    • 2007
  • Even though a constant repeated load is applied, plastic deformation may cumulate. This kind of behavior is called ratcheting. Ratcheting may lead to cracks and finally to failure of the rail. Usually ratcheting occurs on high rails in curves. Ratcheting is influenced by residual stresses, wheel-rail contact stresses, thermal stresses due to wheel/rail rolling contact, shear strength of the rail, strain hardening behavior, etc. In this study, contact stresses and thermal stresses are examined. It is found their value is considerable compared to the maximum contact pressure.

  • PDF