• Title/Summary/Keyword: Thermal behavior analysis

Search Result 1,151, Processing Time 0.04 seconds

Morphology and Charge Transport Properties of Chemically Synthesized Polyaniline-poly(ε-caprolactone) Polymer Films

  • Basavaraja, C.;Kim, Dae-Gun;Kim, Won-Jeong;Kim, Ji-Hyun;Huh, Do-Sung
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.3
    • /
    • pp.927-933
    • /
    • 2011
  • Conducting polyaniline-poly($\varepsilon$-caprolactone) polymer composites were synthesized via in situ deposition techniques. By dissolving different weight percentages of poly($\varepsilon$-caprolactone) (PCL) (10%, 20%, 30%, 40%, and 50%), the oxidative polymerization of aniline was achieved using ammonium persulfate as an oxidant. FTIR, UV-vis spectra, and X-ray diffraction studies support a strong interaction between polyaniline (PANI) and PCL. Structural morphology of the PANI-PCL polymer composites was studied using scanned electron microscopy (SEM) and transmittance electron microscopy (TEM), and thermal stability was analyzed by thermogravimetric analysis (TGA) technique. The temperature-dependent DC conductivity of PANI-PCL polymer composite films was studied in the range of 305-475 K, which revealed a semiconducting behavior in the transport properties of the polymer films. Conductivity increased with the increase of PCL in below critical level, however conductivity of the polymer film was decreased with increase of PCL concentration higher than the critical value.

Analysis of Two Phase Natural Circulation Flow in the Reactor Cavity under External Vessel Cooling (원자로용기 외벽냉각시 원자로공동에서 이상유동 자연순환 해석)

  • Park, Rae-Joon;Ha, Kwang-Soon;Kim, Sang-Baik;Kim, Hee-Dong
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.2141-2145
    • /
    • 2004
  • As part of study on thermal hydraulic behavior in the reactor cavity under external vessel cooling in the APR (Advanced Power Reactor) 1400, one dimensional two phase flow of steady state in the reactor cavity have been analyzed to investigate a coolant circulation mass flow rate in the annulus region between the reactor vessel and the insulation material using the RELAP5/MOD3 computer code. The RELAP5/MOD3 results have shown that a two phase natural circulation flow of 300 - 600 kg/s is generated in the annulus region between the reactor vessel and the insulation material when the external vessel cooling has been applied in the APR 1400. An increase in the heat flux of the inner vessel leads to an increase of the coolant mass flow rate. An increase in the coolant outlet area leads to an increase in the coolant circulation mass flow rate, but the coolant inlet area does not effective on the coolant circulation mass flow rate. The change of the lower coolant outlet to a lower position affects the coolant circulation mass flow rate, but the variation trend is not consistent.

  • PDF

RADIO VARIABILITY AND RANDOM WALK NOISE PROPERTIES OF FOUR BLAZARS

  • PARK, JONG-HO;TRIPPE, SASCHA
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.433-437
    • /
    • 2015
  • We show the results of a time series analysis of the long-term light curves of four blazars. 3C 279, 3C 345, 3C 446, and BL Lacertae. We used densely sampled light curves spanning 32 years at three frequency bands (4.8, 8, 14.5 GHz), provided by the University of Michigan Radio Astronomy Observatory monitoring program. The spectral indices of our sources are mostly flat or inverted (-0.5 < ${\alpha}$ < 0), which is consistent with optically thick emission. Strong variability was seen in all light curves on various time scales. From the analyses of time lags between the light curves from different frequency bands and the evolution of the spectral indices with time, we find that we can distinguish high-peaking flares and low-peaking flares according to the Valtaoja et al. classification. The periodograms (temporal power spectra) of the light curves are in good agreement with random-walk power-law noise without any indication of (quasi-)periodic variability. We note that random-walk noise light curves can originate from multiple shocks in jets. The fact that all our sources are in agreement with being random-walk noise emitters at radio wavelengths suggests that such behavior is a general property of blazars. We are going to generalize our approach by applying our methodology to a much larger blazar sample in the near future.

Analysis on Hot Plate Welding of Thermoplastic Elastomer Packing (열가소성 엘라스토머 패킹의 열융착 해석)

  • Kim, Min Ho;Lee, Yong Tae;Chung, Jae Dong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.12
    • /
    • pp.477-482
    • /
    • 2016
  • Airtight containers have been widely used in many industries and household. They need a packing for sealing between the inside and outside. Previous packing materials have some drawbacks like stench, stickiness, and difficulty of applying to automated manufacturing systems. So, a new packing material which is harmless and suitable for automation is needed. This study performed a hot plate welding process of thermoplastic elastomer (TPE) as the packing material. The hot plate welding process included a phase change process of solidification and melting. The porosity-enthalpy method was adopted in order to simulate phase change problems. The TPE showed non-Newtonian fluid characteristics during the melting process. Since properties of SEBS are not well-defined, we established TPE properties by observing the melting behavior of TPE. In order to find an optimized condition, a parametric study including packing thickness, shapes, hot plate temperature, and thermal resistance, was conducted.

Microstructure Analysis with Preparation Condition of Electrolyte Membrane for High Temperature Electrolysis (고온 수전해 전해질 막의 제막조건에 따른 미세구조 분석)

  • Choi, Ho-Sang;Son, Hyo-Seok;Hwang, Gab-Jin;Bae, Ki-Kwang
    • Journal of Hydrogen and New Energy
    • /
    • v.17 no.2
    • /
    • pp.141-148
    • /
    • 2006
  • This study was carried out to analyze the microstructure characteristics of electrolyte membrane through XRD, SEM and AC impedance measurement for using in high temperature steam electrolysis(HTE). It was investigated that thermal stability and electric characteristics by sintering condition using dry and wet process, and confirmed growth of particle and density change by sintering temperature. The sintering temperature and behavior had an effect on the relative density of the ceramic and the average grain size. The more amount of dispersant in organic compound increase, the more the density increased. But the binder was shown opposite phenomenon. It was analyzed that electrolyte resistance and electrical characteristics using AC impedance. The electrical properties of YSZ grain boundary changed with the sintering temperature.

A Game Theory Based Interaction Strategy between Residential Users and an Electric Company

  • Wang, Jidong;Fang, Kaijie;Yang, Yuhao;Shi, Yingchen;Xu, Daoqiang;Zhao, Shuangshuang
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.11-19
    • /
    • 2018
  • With the development of smart grid technology, it has become a hotspot to increase benefits of both residential users and electric power companies through demand response technology and interactive technology. In this paper, the game theory is introduced to the interaction between residential users and an electric company, making a mutually beneficial situation for the two. This paper solves the problem of electricity pricing and load shifting in the interactive behavior by building the game-theoretic process, proposing the interaction strategy and doing the optimization. In the simulation results, the residential users decrease their cost by 11% mainly through shifting the thermal loads and the electric company improves its benefits by 5.6% though electricity pricing. Simulation analysis verifies the validity of the proposed method and shows great revenue for the economy of both sides.

A Study on Wearing Sensations of Girls'High School Uniforms Based on Elasticity(1) -Focusing on Mechanical Properties and Insulation- (신축성에 따른 여고생 교복의 착용감에 관한 연구(제1보) -역학적 특성과 보온성에 관하여-)

  • 민경혜;류덕환
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.27 no.5
    • /
    • pp.545-553
    • /
    • 2003
  • A good school uniform leads students to good behavior and have them enjoy desirable school life. Therefore a better fabric for girls' high school uniform suggested through two series of studies; first, examined the various aspects of current uniforms. Second, made a new fabric for uniform considering elasticity for activity and comfortableness, and compared its characteristics with those of the current uniforms. The results are as follows; 1 Most of students wanted uniforms considering elasticity for activity and wearing. 2. The measurement of the elasticities of the uniform materials showed that the material which was made using the elastic material was more elastic than the currently used material by 42.12% in summer material and 20.05% in winter one. 3. The analysis using the combination of the values of mechanical properties showed that the elastic material was better in the wearing, tactile senses, and drape properties than the current material, even though it was a little worse in shape-stability. 4. To compare the thermal insulation, clo values were measured. For winter uniform, the elastic material was better than the current one in keeping warm. However, This study did not find any big difference between summer uniform materials.

Improvements of Extended Drain NMOS (EDNMOS) Device for Electrostatic Discharge (ESD) Protection of High Voltage Operating LDI Chip (고전압용 LDI 칩의 정전기 보호를 위한 EDNMOS 소자의 특성 개선)

  • Yang, Jun-Won;Seo, Yong-Jin
    • Journal of Satellite, Information and Communications
    • /
    • v.7 no.2
    • /
    • pp.18-24
    • /
    • 2012
  • High current behaviors of the extended drain n-type metal-oxide-semiconductor field effects transistor (EDNMOSFET) for electrostatic discharge (ESD) protection of high voltage operating LDI (LCD Driver IC) chip are analyzed. Both the transmission line pulse (TLP) data and the thermal incorporated 2-dimensional simulation analysis demonstrate a characteristic double snapback phenomenon after triggering of biploar junction transistor (BJT) operation. Also, background doping concentration (BDC) is proven to be a critical factor to affect the high current behavior of the EDNMOS devices. The EDNMOS device with low BDC suffers from strong snapback in the high current region, which results in poor ESD protection performance and high latchup risk. However, the strong snapback can be avoided in the EDNMOS device with high BDC. This implies that both the good ESD protection performance and the latchup immunity can be realized in terms of the EDNMOS by properly controlling its BDC.

Preparation and Characterization of Poly(vinyl alcohol)/Poly(acrylic acid) Hydrogel by Radiation (방사선을 이용하여 제조한 poly(vinyl alcohol)/poly(acrylic acid) 하이드로젤의 제조 및 특성)

  • Park, Jong-Seok;Kim, Hyun-A;Choi, Jong-Bae;Gwon, Hui-Jeong;Lim, Youn-Mook;Nho, Young-Chang
    • Journal of Radiation Industry
    • /
    • v.5 no.4
    • /
    • pp.377-382
    • /
    • 2011
  • Poly(vinyl alcohol) (PVA) is an interesting material with good biocompatibility, high elasticity and hydrophilic chacrateristics. In this study, crosslinked hydrogels based on PVA, and poly(acrylic acid) (PAAc) were prepared by gamma-ray irradiation. PVA and PAAc powders were dissolved in deionized water, and then irradiated by a gamma-ray with a radiation dose of 50 kGy to make hydrogels. The hydrogels were then annealed in an oven at $120^{\circ}C$ for 10 min, 30 min and 50 min under nitrogen atmosphere. The properties of a hydrogel such as gel fraction, swelling behavior, thermogravimetric analysis (TGA) and adhesive strength as a function of PAAc content and annealing time were investigated. The gel fraction decreases with decreasing PAAc content and increasing annealing time. The thermal behaviors have shown different patterns according to the annealing time. The adhesive strength increases with increasing PAAc content.

A Study of Thermo-Mechanical Behavior and Its Simulation of Silicon Nitride Substrate on EV (Electronic Vehicle)'s Power Module (전기자동차 파워모듈용 질화규소 기판의 열기계적 특성 및 열응력 해석에 대한 연구)

  • Seo, Won;Jung, Cheong-Ha;Ko, Jae-Woong;Kim, Gu-Sung
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.4
    • /
    • pp.149-153
    • /
    • 2019
  • The technology of electronic packaging among semiconductor technologies is evolving as an axis of the market in its own field beyond the simple assembly process of the past. In the field of electronic packaging technology, the packaging of power modules plays an important role for green electric vehicles. In this power module packaging, the thermal reliability is an important factor, and silicon nitride plays an important part of package substrates, Silicon nitride is a compound that is not found in nature and is made by chemical reaction between silicon and nitrogen. In this study, this core material, silicon nitride, was fabricated by reaction bonded silicon nitride. The fabricated silicon nitride was studied for thermo-mechanical properties, and through this, the structure of power module packaging was made using reaction bonded silicon nitride. And the characteristics of stress were evaluated using finite element analysis conditions. Through this, it was confirmed that reaction bonded silicon nitride could replace the silicon nitride as a package substrate.