• Title/Summary/Keyword: Thermal analysis characteristics

Search Result 2,348, Processing Time 0.032 seconds

Management Planning of Wind Corridor based on Mountain for Improving Urban Climate Environment - A Case Study of the Nakdong Jeongmaek - (도시환경개선을 위한 산림 기반 바람길 관리 계획 - 낙동정맥을 사례로 -)

  • Uk-Je SUNG;Jeong-Min SON;Jeong-Hee EUM;Jin-Kyu MIN
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.26 no.1
    • /
    • pp.21-40
    • /
    • 2023
  • This study analyzed the cold air characteristics of the Nakdong Jeongmaek, which is advantageous for the formation of cold air that can flow into the city, in order to suggest the wind ventilation corridor plans, which have recently been increasing interest as a way to improve the urban thermal environment. In addition, based on the watershed analysis, specific cold-air watershed areas were established and management plans were suggested to expand the cold air function of the Nakdong Jeongmaek. As a result of the analysis of cold air in the Nakdong Jeongaek, cold air was strongly generated in the northern forest of the Jeongamek, and flowed into nearby cities along the valley topography. On average, the speed of cold air was high in cities located to the east of the Jeongmaek, while the height of cold air layer was high in cities located to the west. By synthesizing these cold air characteristics and watershed analysis results, the cold-air watershed area was classified into 8 zones, And the plans were proposed to preserve and strengthen the temperature reduction of the Jeongmaek by designating the zones as 'Conservation area of Cold-air', 'Management area of Cold-air', and 'Intensive management area of Cold-air'. In addition, in order to verify the temperature reduction of cold air, the effect of night temperature reduction effect was compared with the cold air analysis using weather observation data. As a result, the temperature reduction of cold air was confirmed because the night temperature reduction was large at the observation station with strong cold air characteristics. This study is expected to be used as basic data in establishing a systematic preservation and management plan to expand the cold air function of the Nakdong Jeongmaek.

Scientific Comparison Study on Characteristics of Firing and Making Materials for Sherds Excavated from Celadon Kiln Site of Punggil-ri, Jangheung (장흥 풍길리 청자요지 출토 도자기들의 소성특성 및 재료학적 상관성 비교 연구)

  • Han, Min Su;Lee, Jang Jon
    • Journal of Conservation Science
    • /
    • v.36 no.2
    • /
    • pp.112-122
    • /
    • 2020
  • The purpose of this study was to find out the correlation through comparative analysis of used materials and manufacturing techniques such as firing characteristics for sherds excavated from celadon kiln site in Punggil-ri, Jangheung. The color difference of the sherds was very wide, and even in the microstructure of the cross section of the glaze layer and the body layer, the celadons, whitewares, blackware, and stonewares could not be characterized because they did not show distinct differences from each other. As a result of estimating the firing temperature through the analysis of constituent minerals and thermal analysis, most of them were estimated to have been fired at 1000℃, but some were fired at high temperatures above 1200℃. It was difficult to clearly distinguish between celadon and whiteware even in the major compositional content of bodies. In the statistical analysis, glaze could be classified three group according to the type of sherds, but the bodies of celadons, whitewares, and blackware classified into one similar group. It is considered that it is not more likely differences in raw materials but some ingredients were removed or added during the purification process. Conclusionally, in this kiln site was found through scientific analysis that there were technical attempts to produce various ceramics, and that the manufacturing techniques and materials of ceramics were in an early stage that was not stabilized.

Numerical analysis for heat transfer and pressure drop characteristics of (다양한 배플 인자에 따른 셀-튜브 열교환기의 열전달 및 압력강하 특성에 관한 수치해석)

  • Hou, Rong-Rong;Park, Hyeong-Seon;Yoon, Jun-Kyu;Lim, Jong-Han
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.4
    • /
    • pp.367-375
    • /
    • 2014
  • In numbers of kinds of heat exchanger, the shell-tube heat exchanger is the most commonly used type of heat exchanger in the industry field. In order to improve the thermal performance of the heat exchanger, this study was analyzed heat transfer characteristics according to arrangement of baffle and direction of baffle and bump phase of baffle about shell-tube heat exchanger using appropriate SST (Shear Stress Transport) turbulence model for flow separation and boundary layer analysis. As the boundary condition for CFD (Computational Fluid Dynamics) analysis, the inlet temperature of shell side was constantly 344 K and the variation of the water flow rate was 6, 12, 18 and 24 l/min. As the result of analysis, zigzag baffle arrangement enhances heat transfer rate and pressure drop. Furthermore, in the direction of the baffle, heat transfer rate is more improved with vertical type and angle $45^{\circ}$ type than existing type, and pressure drop was little difference. Also, the bump shape of baffle surface contributes to heat transfer rate and pressure drop improvement due to the increased heat transfer area. Through analysis results, we knew that the increase of the heat transfer was influenced by flow separation, fluid residual time, contact area with the tube, flow rate, swirl and so on.

Transient Heat Transfer Analysis and Fire Test for Evaluation on Fire Resistance Performance of A60 Class Deck Penetration Piece (A60급 갑판 관통 관의 방화성능 평가를 위한 과도 열전달 해석과 화재시험)

  • Park, Woo Chang;Song, Chang Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.4
    • /
    • pp.1-9
    • /
    • 2021
  • A60 class deck penetration piece is a fire-resistance apparatus installed on the deck compartment to protect lives and prevent flame diffusion in fire accidents. In case that the A60 piece is newly developed or its initial design is revised, it is important to verify the fire resistance performance using a fire test procedure (FTP) code. In this paper, transient heat transfer analysis was carried out to evaluate the fire resistance design compatibility of the newly devised A60 piece. The analysis results were verified via a fire test. The heat transfer characteristics were also investigated by comparing design specifications, such as diameter, internal configuration, and material type. The analysis was performed using ABAQUS/Implicit, and the fire test was performed according to the FTP code. The fire resistance performance of the A60 pieces satisfied the safety of life at sea convention regulation. The material type was the most important design specification for the A60 piece. Based on the maximum test temperature, the measured temperature of SUS316L material was 25% lower than that of S45C on average. The differences between thermal conductivity and specific heat of each material were 17% and 58%, respectively.

Characteristics of Cathode material in SOFC (고체 전해질형 연료전지의 산소극 재료에 대한 연구)

  • Park, J.H.;Park, T.G.;Eom, S.W.;Kim, G.Y.;Moon, S.I.;Lim, H.C.;Lee, C.W.
    • Proceedings of the KIEE Conference
    • /
    • 1995.07c
    • /
    • pp.1051-1053
    • /
    • 1995
  • Nowadays perovskite $La_{1-x}Sr_xMnO_3$ is preferred cathode material in Solid Oxide Fuel cell(SOFC). The $La_{1-x}Sr_xMnO_3$ with Sr contents ranging $x=0{\sim}1.0$ were prepared by a citrate method. These powders were characterized by usual means like TG/DTA, X-ray diffraction analysis. The samples used for measuring thermal expansion were prepared as pellets by cold pressing and subsequent sintering in air at $1200^{\circ}C$ for 5 hours. To measure the by-product of $La_{1-x}Sr_xMnO_3$ reacted with 8mol% YSZ, that samples were sintered at $1200^{\circ}C$ for 5 hours.

  • PDF

Analysis of Eddy Current Loss on Permanent Magnets of Interior Permanent Magnet Synchronous Motor for Railway Transit (철도차량용 매입형 영구자석 동기전동기의 영구자석 와전류 손실 분석 연구)

  • Park, Chan-Bae;Lee, Hyung-Woo;Lee, Byung-Song;Kim, Nam-Po
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.2310-2316
    • /
    • 2011
  • In order to apply Interior Permanet Magnet Synchronous Motor(IPMSM) to the propulsion system of the railway transit, 110 (kW) class IPMSMs with high-power density are designed as a concentrated winding model and a distributed winding model in this study. The concentrated winding model designed in this study is 6 poles/9 slots and the distributed winding model is 6 poles/36 slots. In general, the eddy current losses in the permanent magnets of IPMSM are caused by the slot harmonics. The thermal demagnetization of the magnet by the eddy current losses at high rotational speed often becomes one of the major problems in the IPMSM with a concentrated windings especially. A design to reduce eddy current losses in permanent magnets design is important in IPMSM for the railway vehicle propulsion system which requires high-speed operation. Therefore, a method to devide the permanent magnet is proposed to reduce the eddy current losses in permanent magnet in this study. Authors analyze the variation characteristics of the eddy current losses generated in permanent magnet of the concentrated winding model by changing the number of the division of the permanent magnets.

  • PDF

Analysis of Ultimate Capacity of Plate Anchor on Loading Rate Capacity in Clay (점토 지반에서 인발속도에 따른 판앵커의 극한 인발저항력 분석)

  • Seo, Young-Kyo;Ryu, Dong-Man
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.3
    • /
    • pp.15-21
    • /
    • 2013
  • Anchors are primarily designed and constructed to resist outwardly directed loads imposed on the foundation of a structure. These outwardly directed loads are transmitted to the soil at a greater depth by the anchors. Buried anchors have been used for thousands of years to stabilize structures. Various types of earth anchors are now used for the uplift resistance of transmission towers, utility poles, submerged pipelines, and tunnels. Anchors are also used for the tieback resistance of earth-retaining structures, waterfront structures, at bends in pressure pipelines, and when it is necessary to control thermal stress. In this research, we analyzed the uplift behavior of plate anchors in clay using a laboratory experiment to estimate the uplift behavior of plate anchors under various conditions. To achieve the research purpose, the uplift resistance and displacement characteristics of plate anchors caused by the embedment ratio, plate diameter, and loading rate were studied, compared, and analyzed for various cases.

Characteristic Analysis of the Cooling System Using Ice Slurry Type Heat Storage System (아이스슬러리형 빙축열 시스템을 이용한 냉각 시스템의 성능에 관한 실험적 연구)

  • Lee, Dong-Won;Kim, Jeong-Bae
    • Journal of Energy Engineering
    • /
    • v.20 no.1
    • /
    • pp.30-35
    • /
    • 2011
  • To clarify the hydraulic and thermal characteristics of ice slurry which made from 6.5% ethylene glycol-water solution flow in the double tube and plate type heat exchanger, experimental studies were performed. The mass flux and ice fraction of ice slurry were varied from 800 to 3500 kg/$m^2s$(or 7 to 17 kg/min) and from 0 to 25%, respectively. Through the experiment, it was found that the measured pressure drop and heat transfer rate increase with the mass flux and ice fraction; however the effect of ice fraction appears not to be significant at high mass flux region. At the region of low mass flux, a sharp increase in the pressure drop and heat transfer rate were observed depends on mass flux.

The Study of Aerodynamic Characteristics of Jet-Vane Affected by the Shroud (Shroud의 영향에 따른 제트 베인의 공기역학적 특성 연구)

  • Park, Soon-Jong;Park, Jong-Ho
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.16 no.2
    • /
    • pp.34-41
    • /
    • 2012
  • Thrust vector control system is a control device which is mounted on the exit of the nozzle to generate pitch, yaw and roll directional force by deflecting flow direction of the supersonic jet from the nozzle. Thermal and aerodynamic loads are acting on the surface of jet vane when it is exposed to the jet flow. Axial thrust loss and side thrust loss are affected by shock patterns and interactions between jet-vanes which varies with jet-vane geometry and turning angle. In this research, the performance estimation using the numerical simulation analysis of the nozzle is given and the investigation of the flow visualization and aerodynamic performance with the enforced power to the vane is taken.

Growth Mechanism and Crystal Ordering of Spherulitic Patterns in a Belousov-Zhabotinsky Type Reaction System

  • Yadav, Narendra;Majhi, S.S.;Srivastava, P.K.
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.10
    • /
    • pp.3397-3406
    • /
    • 2012
  • Three types of spherulitic morphologies have been investigated in dual substrate mode of Belousov-Zhabotinsky (BZ) type reaction system. Prior to growth of spherulites, three distinct patterning behaviors have been observed sequentially during the reaction process. Initial and the early-phase of reaction showed the emergence of concentric ring-like wave patterns. A colloidal-state of reaction consists of numerous fine solid particles, which forms primarily some nucleation centers of dendritic characters. The nucleation centers were found to grow in sizes and shapes with the progress of reaction. It leads to growth of dendritic-like spherulitic crystal patterns. The resultant spherulites showed transitions in their morphologies, including sea-weeds and rhythmic spherulitic crystal patterns, by the effects substituted organic substrate and in the higher concentration of bromate-initiator respectively. The branching mechanism and crystal ordering of spherulitic textures were studied with help of optical microscope (OPM) and scanning electron microscope (SEM). Characteristics of crystal phases were also evaluated using X-ray diffraction (XRD) and differential thermal analysis (DTA). Results indicated that the compositions of reactants and crystal orderings were interrelated with morphological transitions of spherulites as illustrated and described.